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Traditional Priority Queue 
•  Normal priority queue 

events occur in the 
present. 

•  Timeline of update events 
maintains history of 
updates. 

•  Updates occur in the 
present and are 
appended to the end of 
the timeline. 

•  Queries can be made in 
the present. 

t 
insert(7) 

insert(10) 
insert(8) 

insert(11) 
insert(9) 

delete-min 

find-min 

min = 8 

Present 
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Updates in the Past 

t 

•  Would like to insert(6) at 
the beginning of the 
timeline. 

•  Cannot insert(6) right now 
because do not know 
intervening updates. 

•  In a normal priority 
queue, can replay all 
intervening updates. 

•  Costly if large number of 
updates. 

Present 

insert(6) 
? 



Priority Queue Definition	  
•  Update in the present 

are appended to the 
end of the timeline: 
–  insert 
–  delete-min 

•  Query the state of the 
structure in the 
present: 
–  find-min 

t 
insert(9) delete-min 
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Partially Retroactive Priority 
Queue 

time 

key 
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Partially Retroactive Priority 
Queue 

time 

key 

[DIL03] 

insert(11) 
insert(7) 

insert(8) delete-min 
insert(10) delete-min 

insert(9) 
insert(5) 

Present 
find-min 

min = 8 
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Partially Retroactive Priority 
Queue: Update 

insert(6) 

time 

key 

[DIL03] 
Insert-Op(0, insert(6)) 

insert(11) 
insert(7) 

insert(8) delete-min 
insert(10) delete-min 

insert(9) 
insert(5) 

Present 
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Partially Retroactive Priority 
Queue: Query 

time 

key 

[DIL03] 
min = 7 

find-min insert(6) 
insert(11) 

insert(7) 
insert(8) delete-min 

insert(10) delete-min 
insert(9) 

insert(5) 
Present 
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                   runtime 

Partially Retroactive Priority 
Queue: Query 

time 

key 

[DIL03] 
min = 7 

find-min insert(6) 
insert(11) 

insert(7) 
insert(8) delete-min 

insert(10) delete-min 
insert(9) 

insert(5) 
Present 

O(logm)
m = number of updates in timeline. 
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Fully Retroactive Priority 
Queue: Query 

time 

key 

[DIL03] 
find-min 

min = 6 

insert(6) 
insert(11) 

insert(7) 
insert(8) delete-min 

insert(10) delete-min 
insert(9) 

insert(5) 
Present 
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Previous Result: Fully 
Retroactive Priority Queue 

time 

key 

[DIL03] 
find-min 

min = 6 

insert(6) 
insert(11) 

insert(7) 
insert(8) delete-min 

insert(10) delete-min 
insert(9) 

insert(5) 
Present 

                       runtime O( m logm)
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Partial vs. Full Retroactivity 

•  Partial retroactivity: updates can be added 
or deleted from anywhere in timeline but 
queries can only be made in the present. 
[DIL03] 

•  Full retroactivity: queries can be made at 
any point in the timeline. [DIL03] 

•  Not always easy converting from partial to 
full retroactivity    
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Can we minimize the cost of converting from 
partial to full retroactivity for retroactive data 

structures? 
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Previous Results 

[DIL03, GK09]: 

 
 
 

 
  

Abstract Data Type Partially Retroactive Fully Retroactive 
Dictionary 

Queue 
Stack 
Deque 

Union-Find 
Priority queue   

O(logm) O(logm)
O(logm)O(1)

O(logm)

O(logm)
O(logm)
O(logm)

O(logm)
O(logm)
O(logm)

O( m logm)
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Deque 

Union-Find 
Priority queue   

O(logm) O(logm)
O(logm)O(1)

O(logm)

O(logm)
O(logm)
O(logm)

O(logm)
O(logm)
O(logm)

O( m )
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Our Results 

[DIL03, GK09, DKLSY15]: 

 
 
 
 

                 overhead in priority queues  
   obtained through hierarchical checkpointing 

Abstract Data Type Partially Retroactive Fully Retroactive 
Dictionary 

Queue 
Stack 
Deque 

Union-Find 
Priority queue   

O(logm) O(logm)
O(logm)O(1)

O(logm)

O(logm)
O(logm)
O(logm)

O(logm)
O(logm)
O(logm)

!O(logm)

!O(log2m)
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Previous Results 
Checkpointing 

     partially retroactive priority queues each 
spanning a prefix of the timeline. 

Θ( m )

Θ( m )

O( m )

time [DIL03] 

u1 u2 u3 u6 u5 

C1 C2 C3 

Q[1,3) 

Q[1, 6) 

Q[1,7) 
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Previous Results 
Checkpointing: Query 

Temporarily add updates to partially 
retroactive priority queue. 
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Previous Results 
Checkpointing: Query 

overhead for queries 

time find-min [DIL03] 

O( m )

C1 C2 C3 

u1 u2 u3 u6 u5 

Q[1,3) 

Q[1, 6) 

Q[1,7) 



Demaine, Kaler, Liu, Sidford, Yedidia 

Previous Results 
Checkpointing: Update 

Insert update into all intersecting partially 
retroactive priority queues. 

 

time 

   u4 

[DIL03] 

C1 C2 C3 

u1 u2 u3 u6 u5 
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Previous Results 
Checkpointing: Update 

time [DIL03] 

overhead on update time O( m )

C1 C2 C3 

u1 u2 u3 u6 u5    u4 

Q[1,3) 

Q[1, 6) 

Q[1,7) 
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Previous Results 
Checkpointing: Query 

Find-Min(8) 

O( m )
overhead 
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Previous Results 
Checkpointing: Update 

•  May need to update       partially 
retroactive priority queues.   

m

Insert-Op(3, U3) 

O( m )
overhead 
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Get-View(8) 
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Checkpointing 

Find-Min(8) O( m ) overhead 



Demaine, Kaler, Liu, Sidford, Yedidia 

Hierarchical Checkpointing 

u1 u2 u4 u6 u7 u8 u3 u5 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

time 
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Hierarchical Checkpointing 

Inner nodes contains partially retroactive 
priority queues spanning segment of time.   

time 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

u1 u2 u4 u6 u7 u8 u3 u5 
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Hierarchical Checkpointing 

u1 u2 u4 u6 u7 u8 u3 u5 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

Each node contains updates in leaves of subtree.   
time 
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Hierarchical Checkpointing: 
Update 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

time 

u1 u2 u4 u6 u7 u8 u3 u5 

Delete-Op(u4) 
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Hierarchical Checkpointing: 
Update 

Q[3,5) 

time 

u3 

Q[1,5) Q[5,9) 

Q[1,9) 

Q[1,3) 

u1 u2 

Q[5,7) Q[7,9) 

u6 u7 u8 u5 

Delete-Op(u4) 
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Hierarchical Checkpointing: 
Update 

u3 

Q[1,5) 

Delete-Op(u4) 
time 

Q[1,9) 
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u1 u2 

Q[5,9) 
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Hierarchical Checkpointing: 
Update 

Q[1,5) 

Q[1,9) 

time 

u3 Q[1,3) 

u1 u2 

Q[5,9) 

Q[5,7) Q[7,9) 

u6 u7 u8 u5 

Delete-Op(u4) 
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Hierarchical Checkpointing: 
Update 

O(logm)update partially retroactive priority queue ancestors  
time 

Q[1,5) 

Q[1,9) 

u3 Q[1,3) 

u1 u2 

Q[5,9) 

Q[5,7) Q[7,9) 

u6 u7 u8 u5 
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Hierarchical Checkpointing: 
Update 

O(log2m) overhead with extra factor from tree rebuild  

time 

Q[1,5) 

Q[1,9) 

u3 Q[1,3) 

u1 u2 

Q[5,9) 

Q[5,7) Q[7,9) 

u6 u7 u8 u5 
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Hierarchical Checkpointing: 
Update 

O(log3m) update time in fully retroactive priority queue 

time 

Q[1,5) 

Q[1,9) 

u3 Q[1,3) 

u1 u2 

Q[5,9) 

Q[5,7) Q[7,9) 

u6 u7 u8 u5 
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Hierarchical Checkpointing: 
Query 

To query, merge structures that span disjoint, contiguous 
intervals of time to produce read-only structure. 

Find-Min(6) time 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

u1 u2 u4 u6 u7 u8 u3 u5 
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Hierarchical Checkpointing: 
Query 

u1 u2 u4 u6 u7 u8 u3 u5 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

Merge disjoint, contiguous intervals of time. 

time Find-Min(6) 
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Hierarchical Checkpointing: 
Query 

u1 u2 u4 u6 u7 u8 u3 u5 

Q[1,3) Q[3,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

Merge disjoint, contiguous intervals of time. 

time Find-Min(6) 
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Hierarchical Checkpointing: 
Query 

O(logm)partially retroactive priority queues to merge 

time Find-Min(6) 

Q[1,3) Q[1,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

u1 u2 u4 u6 u7 u8 u3 u5 
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Hierarchical Checkpointing: 
Query 

Q[1,3) Q[1,5) Q[5,7) Q[7,9) 

Q[1,5) Q[5,9) 

Q[1,9) 

time Find-Min(6) 

u1 u2 u4 u6 u7 u8 u3 u5 

Requires ability to merge two partially retroactive priority 
queues to form a read-only partially retroactive priority queue. 
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Checkpointing vs. 
Hierarchical Checkpointing 

1.  Checkpointing is a general transformation that 
can be applied to any partially retroactive data 
structure. 

2.  Hierarchical checkpointing has a stronger 
bound on conversion with a stronger 
assumption on partially retroactive data 
structure. 

3.  Hierarchical checkpointing requires ability to 
merge two versions of a structure to produce 
read-only structure that can be queried. 
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Hierarchical Checkpointing 

Insert-Op(6, U6) 



Demaine, Kaler, Liu, Sidford, Yedidia 

Hierarchical Checkpointing 

Insert-Op(6, U6) 

O(log2m) overhead 
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Hierarchical Checkpointing 

Get-View(8) 
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Hierarchical Checkpointing 

Get-View(8) 

O(logm) overhead 
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Merging PRPQs 

•  Qnow contains all elements that are in a 
partially retroactive priority queue 

•  Qdel contains set of elements that were 
deleted from a partially retroactive priority 
queue by delete-min operations 

•  We maintain Qnow and Qdel as weight-
balanced B-trees with balance factor d = 8 
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Merging PRPQs 

time 

Q1, now Q2, now 
Q1, del Q2, del 
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Merging PRPQs 

time 

Q1, now 

Q1, del 
Q2, del 

Q2, now 

Q1, now 
Q1, del Q2, now 

Q2, del 
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Merging PRPQs 

time 

All elements in Q1, del deleted. 
 

Q1, now 

Q1, del 
Q2, del 

Q2, now 

Q1, now 
Q1, del Q2, now 

Q2, del 
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All elements in Q2, now survive. 
 

Merging PRPQs 

time 

Q1, now 

Q1, del 
Q2, del 

Q2, now 

Q1, now 
Q1, del Q2, now 

Q2, del 
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Merging PRPQs 

time 

Smallest                 elements from                        deleted. 
 

Q1, now 

Q1, del 
Q2, del 

Q2, now 

Q1, now 
Q1, del 

D = Q2, del Q1, now∪ Q2, del

Q2, now 
Q2, del 
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Merging PRPQs 

time 

Largest                  elements from                       survive. 
 

Q1, now 

Q1, del 
Q2, del 

Q2, now 

Q1, now 
Q1, del 

Q1, now∪ Q2, delS = Q1, now

Q2, now 
Q2, del 
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Merge by Splitting Trees 
1.  Find element in  
      where                  are  
      less than it.  

Q1, now 
Q2, del 

Q1, now∪ Q2, del

D = Q2, del
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Merge by Splitting Trees 
1.  Find element in  
      where                  are  
      less than it.  
2.  Use the element to split 

each tree into two parts 
containing surviving and 
deleted elements. 

Q1, now 

Q1, now∪ Q2, del

D = Q2, del Q2, del 
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Merge by Splitting Trees 
1.  Find element in  
      where                  are  
      less than it.  
2.  Use the element to split 

each tree into two parts 
containing surviving and 
deleted elements. 

Q1, now 

< 
¸ < ¸ 

Q1, now∪ Q2, del

D = Q2, del Q2, del 
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Merge by Splitting Trees 
1.  Find element in  
      where                  are  
      less than it.  
2.  Use the element to split 

each tree into two parts 
containing surviving and 
deleted elements. 

3.  List of tree pieces 
comprise merged 
structure. 

Q1, now 

< 
¸ < ¸ 

< 

¸ 

< 

¸ Q3, now = [ 

Q3, del = [ ] 

] , 
, 

Q1, now∪ Q2, del

D = Q2, del Q2, del 
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4.  If two pieces originate 
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concatenate them into 
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Merge by Splitting Trees 
4.  If two pieces originate 

from the same tree, 
concatenate them into 
one tree. 

Q3, now = [ ] , , , , , 

Q3, now = [ ] , , , , 

5.  Query the trees in 
merged Qnow	  to find min 
element.	  
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Runtime of Merging by 
Splitting Trees 

1.  Find element in                          where                   are less 
than it.  

  

Q1, now∪ Q2, del D = Q2, del
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Runtime of Merging by 
Splitting Trees 

1.  Find element in                          where                   are less 
than it.  
–  Adaption of finding the (D+1)-st smallest element in k 

arrays [RA10] to k weight balanced binary search trees.  
  

Q1, now∪ Q2, del D = Q2, del
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Runtime of Merging by 
Splitting Trees 

1.  Find element in                          where                   are less 
than it.  
–  Adaption of finding the (D+1)-st smallest element in k 

arrays [RA10] to k weight balanced binary search trees.  
–                     time where                   .  O(k logm)

Q1, now∪ Q2, del D = Q2, del

k = 2 logm
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Runtime of Merging by 
Splitting Trees 

1.  Find element in                          where                   are less 
than it.  
–  Adaption of finding the (D+1)-st smallest element in k 

arrays [RA10] to k weight balanced binary search trees.  
–                     time where                   .  

2.  Use the element to split each tree into two parts containing 
surviving and deleted elements. 

O(k logm)

Q1, now∪ Q2, del D = Q2, del

k = 2 logm
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Runtime of Merging by 
Splitting Trees 

1.  Find element in                          where                   are less 
than it.  
–  Adaption of finding the (D+1)-st smallest element in k 

arrays [RA10] to k weight balanced binary search trees.  
–                     time where                   .  

2.  Use the element to split each tree into two parts containing 
surviving and deleted elements. 
–                     assuming list of tree pieces size                  . 

O(k logm)

O(logm)O(log2m)

Q1, now∪ Q2, del D = Q2, del

k = 2 logm
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Runtime of Merging by 
Splitting Trees 

1.  Find element in                          where                   are less 
than it.  
–  Adaption of finding the (D+1)-st smallest element in k 

arrays [RA10] to k weight balanced binary search trees.  
–                   time where                   .  

2.  Use the element to split each tree into two parts containing 
surviving and deleted elements. 
–                     assuming list of tree pieces size                  . 

3.  List of tree pieces comprise merged structure. 

O(k logm)

O(log2m)

Q1, now∪ Q2, del D = Q2, del

O(logm)

k = 2 logm
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 

–                                  time to sort and                   time to 
concatenate.  
O(logm log logm) O(logm)
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 

–                                  time to sort and                   time to 
concatenate.  

5.  Query the trees in merged Qnow to find min element. 

O(logm log logm) O(logm)
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 

–                                  time to sort and                   time to 
concatenate.  

5.  Query the trees in merged Qnow to find min element. 
–                    time 

O(logm log logm) O(logm)

O(log2m)



Demaine, Kaler, Liu, Sidford, Yedidia 

Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 

–                                  time to sort and                   time to 
concatenate.  

5.  Query the trees in merged Qnow to find min element. 
–                    time 

O(logm log logm) O(logm)

O(log2m) time per merge 

O(log2m)
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 

–                                  time to sort and                   time to 
concatenate.  

5.  Query the trees in merged Qnow to find min element. 
–                    time 

O(logm log logm) O(logm)

O(log2m) time per merge 

O(logm) merges 

O(log2m)
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Runtime of Merging by 
Splitting Trees 

4.  If two pieces originate from the same tree, concatenate them 
into one tree. 

–  If two pieces in the same list are from the same original 
tree, then they span disjoint, contiguous intervals. 

–                                  time to sort and                   time to 
concatenate.  

5.  Query the trees in merged Qnow to find min element. 
–                    time 

O(logm log logm) O(logm)

O(log3m) runtime 

O(log2m)
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Splitting Trees 

•  Merge two partially retroactive priority 
queues by splitting the Qnow and Qdel trees 
to obtain surviving and deleted elements. 

•  Obtain a set of tree pieces.  
•  List of tree pieces comprise merged Qnow 

and Qdel. 
•  Query each of the trees in the merged 

Qnow to obtain the minimum element. 
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Merging PRPQs Example 
Find |Q1, del| smallest elements to delete from Q1, now  U Q2, del 
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Merging PRPQs Example 
Find |Q1, del| smallest elements to delete from Q1, now  U Q2, del 
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Merging PRPQs Example 
Find |Q1, del| smallest elements to delete from Q1, now  U Q2, del 

The merged partially retroactive priority queue contains list of 
tree pieces. 
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Optimizing the Merge 

•  Query for the minimum element in list of 
trees. 

•  To prevent the list of trees from exceeding 
            trees, we can concatenate trees     
    that originated from the same queue. 
•  Merging the                trees with merge  
   time                        where                      
   results in a merge time  of                .  

O(logm)

O(logm)
T (k) = k logm

O(log3m)
k ≤ logm
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Operation Runtime 

Updates 

Queries 

Finding time of deletion 

Hierarchical Checkpointing 
for FRPQs 

•  By applying our checkpointing framework 
directly to fully retroactive priority queues, 
we obtain 

O(log3m)
O(log2m loglogm)
O(log3m loglogm)

O(log2m)

O(log2m)
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Operation Hierarchical 
Checkpointing 

Runtime 

Improved Runtimes 
 

Updates 

Queries 

Finding time of deletion 

Hierarchical Checkpointing 
for FRPQs 

By applying our checkpointing framework 
directly to fully retroactive priority queues, 

we obtain 

O(log3m)

O(log3m)
O(log4m)
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Operation Hierarchical 
Checkpointing 

Runtime 

Improved Runtimes 
 

Updates 

Queries 

Finding time of deletion 

Log-Shaving: Updates 

Simpler rebuild procedure when a subtree is 
unbalanced leads to                updates.    

O(log3m)

O(log3m)
O(log4m)

O(log2m)

O(log2m)
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Operation Hierarchical 
Checkpointing 

Runtime 

Improved Runtimes 
 

Updates 

Queries 

Finding time of deletion 

Log-Shaving: Queries 

Merging the updates using a binary merge 
tree results in                            queries.  

O(log3m)

O(log3m)
O(log4m)

O(log2m)
O(log2m log logm)

O(log2m log logm)



Demaine, Kaler, Liu, Sidford, Yedidia 

Operation Hierarchical 
Checkpointing 

Runtime 

Improved Runtimes 
 

Updates 

Queries 

Finding time of deletion 

Log-Shaving: Find-delete-time 

Modified binary search that maintains a 
counter of current surviving elements results 

in               runtime for find-deletion-time. 

O(log3m)

O(log3m)
O(log4m)

O(log2m log logm)

O(log2m)

O(log2m)

O(log2m)
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Time-Fusibility 
•  Time-fusible partially retroactive data structures 

are structures that allow merging of timelines: 
–  Produces a read-only data structure that contains 

updates from both timelines. 
–  Exhibits substring closure. 
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Time-Fusibility 
•  Time-fusible partially retroactive data structures 

are structures that allow merging of timelines: 
–  Produces a read-only data structure that contains 

updates from both timelines. 
–  Exhibits substring closure. 

•  Time-fusible data structures allow an  
                   overhead converting from partial         
   to full retroactivity via hierarchical checkpointing. 
O(log2m)
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Conclusion and Open 
Questions 
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Conclusion and Open 
Questions 

•  Hierarchical checkpointing procedure for time-fusible 
structures                overhead. O(log2m)
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Conclusion and Open 
Questions 

•  Hierarchical checkpointing procedure for time-fusible 
structures                overhead. 
–  Examples of other structures? 

O(log2m)
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Conclusion and Open 
Questions 

•  Hierarchical checkpointing procedure for time-fusible 
structures                overhead. 
–  Examples of other structures? 

•  Polylogarithmic fully retroactive priority queue with 
runtimes: 

 

Operation Improved Runtimes 
 

Updates 

Queries 

Finding time of deletion 

O(log2m log logm)
O(log2m)

O(log2m)

O(log2m)
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Conclusion and Open 
Questions 

•  Hierarchical checkpointing procedure for time-fusible 
structures                overhead. 
–  Examples of other structures? 

•  Polylogarithmic fully retroactive priority queue with 
runtimes: 

–  Logarithmic or constant overhead? 
 

Operation Improved Runtimes 
 

Updates 

Queries 

Finding time of deletion 

O(log2m log logm)
O(log2m)

O(log2m)

O(log2m)
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Open Questions 

•  Does there exist logarithmic separation 
between partial and full retroactivity for 
priority queues? 

•  Can we adapt hierarchical checkpointing 
to a broader class of structures? 
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PRPQ Fusion 

•  (Diagram describing finding the split-key 
procedure) 

•  We first find the split-key in the PRPQ 
using a modified median finding algorithm 

•  Suppose for simplicity |Qnow| = |Qdel| 
•  (Diagram showing find split key with two 

priority queues, i.e. two sets of Q_now and 
Q_del) 
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Time-Fusibility of PRPQs 

•  Two partially retroactive priority queues 
may be fused 

•  Split-key “splits” elements into elements 
that are deleted and elements that survive 

•  All elements less than split-key are deleted 
in the fused structure 

•  All elements greater than split-key survive  
•  (Words above may be said and replaced 

with a diagram.)  
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Fusion Runtime 

•  The runtime of the fusion operation for 
partially retroactive priority queues is 

•  (Above could be placed with the diagram 
of the fusion in the previous slide.) 

O(logm loglogm)
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Substring Integrity 

•  Deleted element is moved from Qnow to 
Qdel 

•  Delete-min operations that do not move an 
element from Qnow to Qdel can be 
represented by the insertion of a key of ∞ 
weight 


