
Polylogarithmic Fully
Retroactive Priority Queues

via Hierarchical Checkpointing	
Erik	 D.	 Demaine,	 Tim	 Kaler,	 Quanquan	 Liu,	 Aaron	 Sidford,	 Adam	 Yedidia	

Demaine, Kaler, Liu, Sidford, Yedidia

Priority Queue Definition
•  Abstract data type where each

element given a priority key.

Demaine, Kaler, Liu, Sidford, Yedidia

Priority Queue Definition
•  Abstract data type where each

element given a priority key.
•  Priority queue supports:

–  Updates:

Demaine, Kaler, Liu, Sidford, Yedidia

Priority Queue Definition
•  Abstract data type where each

element given a priority key.
•  Priority queue supports:

–  Updates:
•  Insert: Inserts elements.

Demaine, Kaler, Liu, Sidford, Yedidia

Priority Queue Definition
•  Abstract data type where each

element given a priority key.
•  Priority queue supports:

–  Updates:
•  Insert: Inserts elements.
•  Delete-min: Deletes the

element with minimum
key.

Demaine, Kaler, Liu, Sidford, Yedidia

Priority Queue Definition
•  Abstract data type where each

element given a priority key.
•  Priority queue supports:

–  Updates:
•  Insert: Inserts elements.
•  Delete-min: Deletes the

element with minimum
key.

–  Query:
•  Find-min: Finds the

minimum key value
element.

Demaine, Kaler, Liu, Sidford, Yedidia

Priority Queue Definition
•  Abstract data type where each

element given a priority key.
•  Priority queue supports:

–  Updates:
•  Insert: Inserts elements.
•  Delete-min: Deletes the

element with minimum
key.

–  Query:
•  Find-min: Finds the

minimum key value
element.

Demaine, Kaler, Liu, Sidford, Yedidia

Traditional Priority Queue
•  Normal priority queue

events occur in the
present.

Demaine, Kaler, Liu, Sidford, Yedidia

Traditional Priority Queue
•  Normal priority queue

events occur in the
present.

insert(9)

Demaine, Kaler, Liu, Sidford, Yedidia

Traditional Priority Queue
•  Normal priority queue

events occur in the
present.

•  Timeline of update events
maintains history of
updates.

t t
insert(7)

insert(10)
insert(8)

insert(11)
insert(9) Present

Demaine, Kaler, Liu, Sidford, Yedidia

Traditional Priority Queue
•  Normal priority queue

events occur in the
present.

•  Timeline of update events
maintains history of
updates.

•  Updates occur in the
present and are
appended to the end of
the timeline.

t
insert(7)

insert(10)
insert(8)

insert(11)
insert(9) Present

Demaine, Kaler, Liu, Sidford, Yedidia

Traditional Priority Queue
•  Normal priority queue

events occur in the
present.

•  Timeline of update events
maintains history of
updates.

•  Updates occur in the
present and are
appended to the end of
the timeline.

t
insert(7)

insert(10)
insert(8)

insert(11)
insert(9)

delete-min

Present

Demaine, Kaler, Liu, Sidford, Yedidia

Traditional Priority Queue
•  Normal priority queue

events occur in the
present.

•  Timeline of update events
maintains history of
updates.

•  Updates occur in the
present and are
appended to the end of
the timeline.

•  Queries can be made in
the present.

t
insert(7)

insert(10)
insert(8)

insert(11)
insert(9)

delete-min

find-min

min = 8

Present

Demaine, Kaler, Liu, Sidford, Yedidia

Updates in the Past

t
insert(7)

insert(10)
insert(8)

insert(11)
insert(9)

delete-min

•  Would like to insert(6) at
the beginning of the
timeline.

Present

insert(6)

Demaine, Kaler, Liu, Sidford, Yedidia

Updates in the Past

t

•  Would like to insert(6) at
the beginning of the
timeline.

•  Cannot insert(6) right now
because do not know
intervening updates.

Present

insert(6)
?

Demaine, Kaler, Liu, Sidford, Yedidia

Updates in the Past

t

•  Would like to insert(6) at
the beginning of the
timeline.

•  Cannot insert(6) right now
because do not know
intervening updates.

•  In a normal priority
queue, can replay all
intervening updates.

Present

insert(6)
?

Demaine, Kaler, Liu, Sidford, Yedidia

Updates in the Past

t

•  Would like to insert(6) at
the beginning of the
timeline.

•  Cannot insert(6) right now
because do not know
intervening updates.

•  In a normal priority
queue, can replay all
intervening updates.

•  Costly if large number of
updates.

Present

insert(6)
?

Priority Queue Definition	
•  Update in the present

are appended to the
end of the timeline:
–  insert
–  delete-min

•  Query the state of the
structure in the
present:
–  find-min

t
insert(9) delete-min

Demaine, Kaler, Liu, Sidford, Yedidia

Partially Retroactive Priority
Queue

time

key

[DIL03]

insert(11)
insert(7)

insert(8) delete-min
insert(10) delete-min

insert(9)
insert(5)

Present

Demaine, Kaler, Liu, Sidford, Yedidia

Partially Retroactive Priority
Queue

time

key

[DIL03]

insert(11)
insert(7)

insert(8) delete-min
insert(10) delete-min

insert(9)
insert(5)

Present
find-min

min = 8

Demaine, Kaler, Liu, Sidford, Yedidia

Partially Retroactive Priority
Queue: Update

insert(6)

time

key

[DIL03]
Insert-Op(0, insert(6))

insert(11)
insert(7)

insert(8) delete-min
insert(10) delete-min

insert(9)
insert(5)

Present

Demaine, Kaler, Liu, Sidford, Yedidia

Partially Retroactive Priority
Queue: Query

time

key

[DIL03]
min = 7

find-min insert(6)
insert(11)

insert(7)
insert(8) delete-min

insert(10) delete-min
insert(9)

insert(5)
Present

Demaine, Kaler, Liu, Sidford, Yedidia

 runtime

Partially Retroactive Priority
Queue: Query

time

key

[DIL03]
min = 7

find-min insert(6)
insert(11)

insert(7)
insert(8) delete-min

insert(10) delete-min
insert(9)

insert(5)
Present

O(logm)
m = number of updates in timeline.

Demaine, Kaler, Liu, Sidford, Yedidia

Fully Retroactive Priority
Queue: Query

time

key

[DIL03]
find-min

min = 6

insert(6)
insert(11)

insert(7)
insert(8) delete-min

insert(10) delete-min
insert(9)

insert(5)
Present

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Result: Fully
Retroactive Priority Queue

time

key

[DIL03]
find-min

min = 6

insert(6)
insert(11)

insert(7)
insert(8) delete-min

insert(10) delete-min
insert(9)

insert(5)
Present

 runtime O(m logm)

Demaine, Kaler, Liu, Sidford, Yedidia

Partial vs. Full Retroactivity

•  Partial retroactivity: updates can be added
or deleted from anywhere in timeline but
queries can only be made in the present.
[DIL03]

•  Full retroactivity: queries can be made at
any point in the timeline. [DIL03]

•  Not always easy converting from partial to
full retroactivity

Demaine, Kaler, Liu, Sidford, Yedidia

Partial vs. Full Retroactivity

Normal Partially Retroactive Fully Retroactive

Updates Present

Queries Present

Demaine, Kaler, Liu, Sidford, Yedidia

Partial vs. Full Retroactivity

Normal Partially Retroactive Fully Retroactive

Updates Present Past and Present

Queries Present Present

Demaine, Kaler, Liu, Sidford, Yedidia

Partial vs. Full Retroactivity

Normal Partially Retroactive Fully Retroactive

Updates Present Past and Present Past and Present

Queries Present Present Past and Present

Demaine, Kaler, Liu, Sidford, Yedidia

Partial vs. Full Retroactivity

Normal Partially Retroactive Fully Retroactive

Updates Present Past and Present Past and Present

Queries Present Present Past and Present

Can we minimize the cost of converting from
partial to full retroactivity for retroactive data

structures?

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results

[DIL03, GK09]:

Abstract Data Type Partially Retroactive Fully Retroactive
Dictionary

Queue
Stack
Deque

Union-Find
Priority queue

O(logm) O(logm)
O(logm)O(1)

O(logm)

O(logm)
O(logm)
O(logm)

O(logm)
O(logm)
O(logm)

O(m logm)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results

[DIL03, GK09]:

 overhead in priority queues
 obtained through checkpointing

Abstract Data Type Partially Retroactive Fully Retroactive
Dictionary

Queue
Stack
Deque

Union-Find
Priority queue

O(logm) O(logm)
O(logm)O(1)

O(logm)

O(logm)
O(logm)
O(logm)

O(logm)
O(logm)
O(logm)

O(m)

O(m logm)

Demaine, Kaler, Liu, Sidford, Yedidia

Our Results

[DIL03, GK09, DKLSY15]:

 overhead in priority queues
 obtained through hierarchical checkpointing

Abstract Data Type Partially Retroactive Fully Retroactive
Dictionary

Queue
Stack
Deque

Union-Find
Priority queue

O(logm) O(logm)
O(logm)O(1)

O(logm)

O(logm)
O(logm)
O(logm)

O(logm)
O(logm)
O(logm)

!O(logm)

!O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing

 partially retroactive priority queues each
spanning a prefix of the timeline.

Θ(m)

Θ(m)

O(m)

time [DIL03]

u1 u2 u3 u6 u5

C1 C2 C3

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Query

Query nearest checkpoint structure
containing updates before query time.

time [DIL03]

C1 C2 C3

u1 u2 u3 u6 u5

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Query

Query nearest checkpoint structure
containing updates before query time.

time find-min [DIL03]

C1 C2 C3

u1 u2 u3 u6 u5

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Query

Query nearest checkpoint structure
containing updates before query time.

time find-min [DIL03]

C1 C2 C3

u1 u2 u3 u6 u5

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Query

Temporarily add updates to partially
retroactive priority queue.

time find-min [DIL03]

C1 C2 C3

u1 u2 u3 u6 u5

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Query

overhead for queries

time find-min [DIL03]

O(m)

C1 C2 C3

u1 u2 u3 u6 u5

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Update

Insert update into all intersecting partially
retroactive priority queues.

time

 u4

[DIL03]

C1 C2 C3

u1 u2 u3 u6 u5

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Update

Insert update into all intersecting partially
retroactive priority queues.

time [DIL03]

C1 C2 C3

u1 u2 u3 u6 u5 u4

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Update

Insert update into all intersecting partially
retroactive priority queues.

C1 C2 C3

time [DIL03]

u1 u2 u3 u6 u5 u4

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Update

time [DIL03]

overhead on update time O(m)

C1 C2 C3

u1 u2 u3 u6 u5 u4

Q[1,3)

Q[1, 6)

Q[1,7)

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Query

Find-Min(8)

O(m)
overhead

Demaine, Kaler, Liu, Sidford, Yedidia

Previous Results
Checkpointing: Update

•  May need to update partially
retroactive priority queues.

m

Insert-Op(3, U3)

O(m)
overhead

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

m

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

m

m

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

Insert-Op(3, U)

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

Insert-Op(3, U)

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

Insert-Op(3, U) O(m) overhead

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

Get-View(8)

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing

Find-Min(8) O(m) overhead

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

u1 u2 u4 u6 u7 u8 u3 u5

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

time

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

Inner nodes contains partially retroactive
priority queues spanning segment of time.

time

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

u1 u2 u4 u6 u7 u8 u3 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

u1 u2 u4 u6 u7 u8 u3 u5

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

Each node contains updates in leaves of subtree.
time

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

time

u1 u2 u4 u6 u7 u8 u3 u5

Delete-Op(u4)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

time

u1 u2 u6 u7 u8 u3 u5

Delete-Op(u4)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

Q[3,5)

time

u3

Q[1,5) Q[5,9)

Q[1,9)

Q[1,3)

u1 u2

Q[5,7) Q[7,9)

u6 u7 u8 u5

Delete-Op(u4)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

u3

time

Q[1,5)

Q[1,9)

Q[1,3)

u1 u2

Q[5,9)

Q[5,7) Q[7,9)

u6 u7 u8 u5

Delete-Op(u4)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

u3

Q[1,5)

Delete-Op(u4)
time

Q[1,9)

Q[1,3)

u1 u2

Q[5,9)

Q[5,7) Q[7,9)

u6 u7 u8 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

Q[1,5)

Q[1,9)

time

u3 Q[1,3)

u1 u2

Q[5,9)

Q[5,7) Q[7,9)

u6 u7 u8 u5

Delete-Op(u4)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

O(logm)update partially retroactive priority queue ancestors
time

Q[1,5)

Q[1,9)

u3 Q[1,3)

u1 u2

Q[5,9)

Q[5,7) Q[7,9)

u6 u7 u8 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

O(log2m) overhead with extra factor from tree rebuild

time

Q[1,5)

Q[1,9)

u3 Q[1,3)

u1 u2

Q[5,9)

Q[5,7) Q[7,9)

u6 u7 u8 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Update

O(log3m) update time in fully retroactive priority queue

time

Q[1,5)

Q[1,9)

u3 Q[1,3)

u1 u2

Q[5,9)

Q[5,7) Q[7,9)

u6 u7 u8 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Query

To query, merge structures that span disjoint, contiguous
intervals of time to produce read-only structure.

Find-Min(6) time

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

u1 u2 u4 u6 u7 u8 u3 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Query

u1 u2 u4 u6 u7 u8 u3 u5

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

Merge disjoint, contiguous intervals of time.

time Find-Min(6)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Query

u1 u2 u4 u6 u7 u8 u3 u5

Q[1,3) Q[3,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

Merge disjoint, contiguous intervals of time.

time Find-Min(6)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Query

O(logm)partially retroactive priority queues to merge

time Find-Min(6)

Q[1,3) Q[1,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

u1 u2 u4 u6 u7 u8 u3 u5

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing:
Query

Q[1,3) Q[1,5) Q[5,7) Q[7,9)

Q[1,5) Q[5,9)

Q[1,9)

time Find-Min(6)

u1 u2 u4 u6 u7 u8 u3 u5

Requires ability to merge two partially retroactive priority
queues to form a read-only partially retroactive priority queue.

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing vs.
Hierarchical Checkpointing

1.  Checkpointing is a general transformation that
can be applied to any partially retroactive data
structure.

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing vs.
Hierarchical Checkpointing

1.  Checkpointing is a general transformation that
can be applied to any partially retroactive data
structure.

2.  Hierarchical checkpointing has a stronger
bound on conversion with a stronger
assumption on partially retroactive data
structure.

Demaine, Kaler, Liu, Sidford, Yedidia

Checkpointing vs.
Hierarchical Checkpointing

1.  Checkpointing is a general transformation that
can be applied to any partially retroactive data
structure.

2.  Hierarchical checkpointing has a stronger
bound on conversion with a stronger
assumption on partially retroactive data
structure.

3.  Hierarchical checkpointing requires ability to
merge two versions of a structure to produce
read-only structure that can be queried.

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

Insert-Op(6, U6)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

Insert-Op(6, U6)

O(log2m) overhead

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

Get-View(8)

Demaine, Kaler, Liu, Sidford, Yedidia

Hierarchical Checkpointing

Get-View(8)

O(logm) overhead

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

•  Qnow contains all elements that are in a
partially retroactive priority queue

•  Qdel contains set of elements that were
deleted from a partially retroactive priority
queue by delete-min operations

•  We maintain Qnow and Qdel as weight-
balanced B-trees with balance factor d = 8

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

Q1, now Q2, now
Q1, del Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

Q1, now
Q1, del Q2, now

Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

Q1, now
Q1, del Q2, now

Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

Q1, now

Q1, del
Q2, del

Q2, now

Q1, now
Q1, del Q2, now

Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

All elements in Q1, del deleted.

Q1, now

Q1, del
Q2, del

Q2, now

Q1, now
Q1, del Q2, now

Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia
All elements in Q2, now survive.

Merging PRPQs

time

Q1, now

Q1, del
Q2, del

Q2, now

Q1, now
Q1, del Q2, now

Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

Smallest elements from deleted.

Q1, now

Q1, del
Q2, del

Q2, now

Q1, now
Q1, del

D = Q2, del Q1, now∪ Q2, del

Q2, now
Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs

time

Largest elements from survive.

Q1, now

Q1, del
Q2, del

Q2, now

Q1, now
Q1, del

Q1, now∪ Q2, delS = Q1, now

Q2, now
Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
1.  Find element in
 where are
 less than it.

Q1, now
Q2, del

Q1, now∪ Q2, del

D = Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
1.  Find element in
 where are
 less than it.
2.  Use the element to split

each tree into two parts
containing surviving and
deleted elements.

Q1, now

Q1, now∪ Q2, del

D = Q2, del Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
1.  Find element in
 where are
 less than it.
2.  Use the element to split

each tree into two parts
containing surviving and
deleted elements.

Q1, now

<
¸ < ¸

Q1, now∪ Q2, del

D = Q2, del Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
1.  Find element in
 where are
 less than it.
2.  Use the element to split

each tree into two parts
containing surviving and
deleted elements.

3.  List of tree pieces
comprise merged
structure.

Q1, now

<
¸ < ¸

<

¸

<

¸ Q3, now = [

Q3, del = []

] ,
,

Q1, now∪ Q2, del

D = Q2, del Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
4.  If two pieces originate

from the same tree,
concatenate them into
one tree.

Q3, now = [] , , , , ,

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
4.  If two pieces originate

from the same tree,
concatenate them into
one tree.

Q3, now = [] , , , , ,

Q3, now = [] , , , ,

Demaine, Kaler, Liu, Sidford, Yedidia

Merge by Splitting Trees
4.  If two pieces originate

from the same tree,
concatenate them into
one tree.

Q3, now = [] , , , , ,

Q3, now = [] , , , ,

5.  Query the trees in
merged Qnow	 to find min
element.	

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

1.  Find element in where are less
than it.

Q1, now∪ Q2, del D = Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

1.  Find element in where are less
than it.
–  Adaption of finding the (D+1)-st smallest element in k

arrays [RA10] to k weight balanced binary search trees.

Q1, now∪ Q2, del D = Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

1.  Find element in where are less
than it.
–  Adaption of finding the (D+1)-st smallest element in k

arrays [RA10] to k weight balanced binary search trees.
–  time where . O(k logm)

Q1, now∪ Q2, del D = Q2, del

k = 2 logm

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

1.  Find element in where are less
than it.
–  Adaption of finding the (D+1)-st smallest element in k

arrays [RA10] to k weight balanced binary search trees.
–  time where .

2.  Use the element to split each tree into two parts containing
surviving and deleted elements.

O(k logm)

Q1, now∪ Q2, del D = Q2, del

k = 2 logm

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

1.  Find element in where are less
than it.
–  Adaption of finding the (D+1)-st smallest element in k

arrays [RA10] to k weight balanced binary search trees.
–  time where .

2.  Use the element to split each tree into two parts containing
surviving and deleted elements.
–  assuming list of tree pieces size .

O(k logm)

O(logm)O(log2m)

Q1, now∪ Q2, del D = Q2, del

k = 2 logm

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

1.  Find element in where are less
than it.
–  Adaption of finding the (D+1)-st smallest element in k

arrays [RA10] to k weight balanced binary search trees.
–  time where .

2.  Use the element to split each tree into two parts containing
surviving and deleted elements.
–  assuming list of tree pieces size .

3.  List of tree pieces comprise merged structure.

O(k logm)

O(log2m)

Q1, now∪ Q2, del D = Q2, del

O(logm)

k = 2 logm

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

–  time to sort and time to
concatenate.
O(logm log logm) O(logm)

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

–  time to sort and time to
concatenate.

5.  Query the trees in merged Qnow to find min element.

O(logm log logm) O(logm)

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

–  time to sort and time to
concatenate.

5.  Query the trees in merged Qnow to find min element.
–  time

O(logm log logm) O(logm)

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

–  time to sort and time to
concatenate.

5.  Query the trees in merged Qnow to find min element.
–  time

O(logm log logm) O(logm)

O(log2m) time per merge

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

–  time to sort and time to
concatenate.

5.  Query the trees in merged Qnow to find min element.
–  time

O(logm log logm) O(logm)

O(log2m) time per merge

O(logm) merges

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Runtime of Merging by
Splitting Trees

4.  If two pieces originate from the same tree, concatenate them
into one tree.

–  If two pieces in the same list are from the same original
tree, then they span disjoint, contiguous intervals.

–  time to sort and time to
concatenate.

5.  Query the trees in merged Qnow to find min element.
–  time

O(logm log logm) O(logm)

O(log3m) runtime

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Splitting Trees

•  Merge two partially retroactive priority
queues by splitting the Qnow and Qdel trees
to obtain surviving and deleted elements.

•  Obtain a set of tree pieces.
•  List of tree pieces comprise merged Qnow

and Qdel.
•  Query each of the trees in the merged

Qnow to obtain the minimum element.

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs Example
Find |Q1, del| smallest elements to delete from Q1, now U Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs Example
Find |Q1, del| smallest elements to delete from Q1, now U Q2, del

Demaine, Kaler, Liu, Sidford, Yedidia

Merging PRPQs Example
Find |Q1, del| smallest elements to delete from Q1, now U Q2, del

The merged partially retroactive priority queue contains list of
tree pieces.

Demaine, Kaler, Liu, Sidford, Yedidia

Optimizing the Merge

•  Query for the minimum element in list of
trees.

•  To prevent the list of trees from exceeding
 trees, we can concatenate trees
 that originated from the same queue.
•  Merging the trees with merge
 time where
 results in a merge time of .

O(logm)

O(logm)
T (k) = k logm

O(log3m)
k ≤ logm

Demaine, Kaler, Liu, Sidford, Yedidia

Operation Runtime

Updates

Queries

Finding time of deletion

Hierarchical Checkpointing
for FRPQs

•  By applying our checkpointing framework
directly to fully retroactive priority queues,
we obtain

O(log3m)
O(log2m loglogm)
O(log3m loglogm)

O(log2m)

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Operation Hierarchical
Checkpointing

Runtime

Improved Runtimes

Updates

Queries

Finding time of deletion

Hierarchical Checkpointing
for FRPQs

By applying our checkpointing framework
directly to fully retroactive priority queues,

we obtain

O(log3m)

O(log3m)
O(log4m)

Demaine, Kaler, Liu, Sidford, Yedidia

Operation Hierarchical
Checkpointing

Runtime

Improved Runtimes

Updates

Queries

Finding time of deletion

Log-Shaving: Updates

Simpler rebuild procedure when a subtree is
unbalanced leads to updates.

O(log3m)

O(log3m)
O(log4m)

O(log2m)

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Operation Hierarchical
Checkpointing

Runtime

Improved Runtimes

Updates

Queries

Finding time of deletion

Log-Shaving: Queries

Merging the updates using a binary merge
tree results in queries.

O(log3m)

O(log3m)
O(log4m)

O(log2m)
O(log2m log logm)

O(log2m log logm)

Demaine, Kaler, Liu, Sidford, Yedidia

Operation Hierarchical
Checkpointing

Runtime

Improved Runtimes

Updates

Queries

Finding time of deletion

Log-Shaving: Find-delete-time

Modified binary search that maintains a
counter of current surviving elements results

in runtime for find-deletion-time.

O(log3m)

O(log3m)
O(log4m)

O(log2m log logm)

O(log2m)

O(log2m)

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Time-Fusibility
•  Time-fusible partially retroactive data structures

are structures that allow merging of timelines:
–  Produces a read-only data structure that contains

updates from both timelines.
–  Exhibits substring closure.

Demaine, Kaler, Liu, Sidford, Yedidia

Time-Fusibility
•  Time-fusible partially retroactive data structures

are structures that allow merging of timelines:
–  Produces a read-only data structure that contains

updates from both timelines.
–  Exhibits substring closure.

•  Time-fusible data structures allow an
 overhead converting from partial
 to full retroactivity via hierarchical checkpointing.
O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Conclusion and Open
Questions

Demaine, Kaler, Liu, Sidford, Yedidia

Conclusion and Open
Questions

•  Hierarchical checkpointing procedure for time-fusible
structures overhead. O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Conclusion and Open
Questions

•  Hierarchical checkpointing procedure for time-fusible
structures overhead.
–  Examples of other structures?

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Conclusion and Open
Questions

•  Hierarchical checkpointing procedure for time-fusible
structures overhead.
–  Examples of other structures?

•  Polylogarithmic fully retroactive priority queue with
runtimes:

Operation Improved Runtimes

Updates

Queries

Finding time of deletion

O(log2m log logm)
O(log2m)

O(log2m)

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Conclusion and Open
Questions

•  Hierarchical checkpointing procedure for time-fusible
structures overhead.
–  Examples of other structures?

•  Polylogarithmic fully retroactive priority queue with
runtimes:

–  Logarithmic or constant overhead?

Operation Improved Runtimes

Updates

Queries

Finding time of deletion

O(log2m log logm)
O(log2m)

O(log2m)

O(log2m)

Demaine, Kaler, Liu, Sidford, Yedidia

Open Questions

•  Does there exist logarithmic separation
between partial and full retroactivity for
priority queues?

•  Can we adapt hierarchical checkpointing
to a broader class of structures?

Demaine, Kaler, Liu, Sidford, Yedidia

PRPQ Fusion

•  (Diagram describing finding the split-key
procedure)

•  We first find the split-key in the PRPQ
using a modified median finding algorithm

•  Suppose for simplicity |Qnow| = |Qdel|
•  (Diagram showing find split key with two

priority queues, i.e. two sets of Q_now and
Q_del)

Demaine, Kaler, Liu, Sidford, Yedidia

Time-Fusibility of PRPQs

•  Two partially retroactive priority queues
may be fused

•  Split-key “splits” elements into elements
that are deleted and elements that survive

•  All elements less than split-key are deleted
in the fused structure

•  All elements greater than split-key survive
•  (Words above may be said and replaced

with a diagram.)

Demaine, Kaler, Liu, Sidford, Yedidia

Fusion Runtime

•  The runtime of the fusion operation for
partially retroactive priority queues is

•  (Above could be placed with the diagram
of the fusion in the previous slide.)

O(logm loglogm)

Demaine, Kaler, Liu, Sidford, Yedidia

Substring Integrity

•  Deleted element is moved from Qnow to
Qdel

•  Delete-min operations that do not move an
element from Qnow to Qdel can be
represented by the insertion of a key of ∞
weight

