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Weak 2-Coloring Number \ Edit Operation ¢
Some real-world networks are small perturbations of Weak c-Coloring Number Graph Family G, . :
graphs from a structural class due to natural variations or Bounded Expansion Vertex Deletion Edge Deletion Edge.
noise caused by measurement error. Treewidth Bounded Degree Contraction
Planar-Minor-Free Bounded Degree (d) O(log d)-approx. [9] Polynomial time [0] —
Develop algorithms for such y-close to a structural class C —C. i
palg _ Y _ _ Treedepth [d-BDD-V, d-BDD-E] (Ind — C - Inlnd)-inapprox.
graphs for some y edits (vertex deletions, edge deletions,
edge contractions) Star Fores! Bounded Clique Number — _ _
(b) o(log n)-inapprox.
1
Structural Rounding Framework [b-CN-V] when b = Q (nE)
% Stability: A graph minimization (resp. maximization) problem II is stable under edit operation ¥ with constant ¢’ if Bounded (4”m—ﬁm ﬁ)-approx. _
Degeneracy (r at (l 2 ) rox ( l)
OPTy(G") < OPT(G) + c'y 9 y (r) e,lie)-approx. (e <1) ¢’ 1) APPIOX. | € <3
/ —c' -DE- -DE- - . Inr — C - Inlnr)-inapprox.
(resp. OPTH(G') = OPTy(G) — c'y) [r-DE-V, r-DE-E] o(log n)-INAPprox. (Inr — C - InInr)-inappro
given G' y-editable from G under . Il is closed under ¥ when ¢’ = 0. Bounded Weak — — —
»» Structural Lifti [1 can be structurally lifted w.r.t. ¥ with constant c if, given edit sequence Y1,y Y, Where k < y that edits ¢ c-Coloring Number (¢)
W structural Litting. structurally fited w.r.L. i wi ¢ 1t, giv it sequ 1 W2, Pre W =Y ! o(t)-inapprox. when t = o(logn) |o(t)-inapprox. when t = o(logn) | o(t)-inapprox.
into G', a solution S’ for G’ can be converted in polytime to S for G such that [t-BWE-V-c, t-BWE-E-c, (£)-inapp (logn) o(t)-inapp (logn) (V\)/henapz
t'BWE'C'C] (l )
Costy(S) < Costy(S') +c -k ollogn
(resp. Costn(S$) = Costn(S') = ¢ k), Bounded (0(log"* n),0(y/Togw) )-approx. | (0Uognloglogn), 0(logw))- —
* (a, B)-approx: An alg for (C,,)-EDIT is a bicriteria (a, §)-approx if number of edits is at most a times the optimal number of edits Treewidth (W) o(log n)-inapprox. when w = approx. [2]
into ), and 1 < g - 1. w-TW-V. w-TW-E 1 —
Structural Rounding Approximation Theorem: Suppose II [ ’ ] (} (nz)
(C,,)-EDIT is stable under i with constant ¢’ and can be structurally
Input: Graph G = (V, E), paremterized family ¢, of graphs, lifted with constant c. If I has a p(1)-approx in ¢, and Bou_nded (0(10g1'5 n), 0( /logw - log n))— (0(logn loglogn), )-approx. 2] —
target parameter value 1*, edit operation v (€3, ¥)-EDIT has a polytime (a, 8)-approx, then there exists | , Pathwidth (w) apPIox. O(logw - logn)
a polytime - —
Problem: Find k edits ¥, ,, ..., ¥ such that \ [w-PW-V, w-PW-E]
1+ c'ad) - p(BA) + cad )-appro - - _
b (s (- va2() ) e (res(p( ((1C—ac')a6[))(-ﬁ ()ﬁA)Cf claf-zp;rox) Star Forest (2 >?n2pp?3§' (UGC) AP%(afopr;OTéte
' P [SF-V, SF-E] €)-INapprox. P
Objective: Minimize k and A where 4 > A* . ) : :
for 17 on any (§ - 0PTn(6))-close graph to C;. Structural Rounding Applicable Problems
= /
Editing Results: Upper and Lower Bounds i Problem Edit Type ¥ c | C Graph Class C; p(4)
Independent Set (IS) vertex deletion 1 1 degeneracy r 1/(r+1)
Editing to Bounded Degeneracy: Editing to Bounded Weak c-Coloring Number: Independent Set (IS) vertex deletion 1 0 treewidth w 113
o Approximation algorithm: o Used to define bounded expansion ; : ey
v Local Ratio Technique by Bar-Yehuda et. al. o Characterizes bounded degeneracy ¢ = 1 Vertex Cover (VC) vertex de et!on 0 | 1 treew!dtw d ! :3:
v LP-based: (3, 3)-approx for edge deletion and (4, 4)-approx for vertex | |0 Lower bound: Feedback Vertex Set (FVS) vertex deletion 0 | ~ treewidth w 1[3]
deletion v o(log n)-inapprox vertex deletions, edge deletions, Minimum Maximal Matching (MMM) vertex deletion 0 1 treewidth w 1 [3]
v Integrality gap is Q(n) so cannot hope for non-bicriteria approx using edge contractions Chromatic Number (CRN) vertex deletion 0 7 treewidth w 113
this approach v Reduction from SET COVER, similar to reductions Ing dent Set (IS dae delet 0 1 q 1 ' '1
> Lower bound: for degeneracy n er.)en.en et (I1S) edge dele !on egeneracy r /(r+1)
v o(log n)-inapprox vertex deletions distinguishing r and r+1 Dominating Set (DS) edge deletion T 10 degeneracy r 0(r?) [7]
v o(log r)-inapprox edge deletions distinguishing r and r+1 Editing to Treedepth 2 (Star Forests): (¢ —) Dominating Set (DS) edge deletion 7 0 treewidth w 111, 4]
¥ Reduction from SET COVER o [FElMINER) (EELiES Vel WEEs(Epln Edge (£ —) Dominating Set (EDS) edge deletion (N treewidth w 1[4]
o Approximation algorithm: —— _ ;
Editing to Bounded Treewidth: v Reduction to HITTING SET (£ —) Dominating Set (DS) edge contraction 0 1 treewidth w 1
o Approximation algorithm: | v' 4-approx for vertex deletion Edge (¢ —) Dominating Set (EDS) edge contraction 0 | 1 treewidth w T
¥ Relationship between vertex separators and treewidth v’ 3-approx for edge deletion Connected (£ —) Dominating Set edge contraction 0 | 1 treewidth w 1
v' Combine Bodleaender’s 0(log n)-approx alg for treewidth and Fiege o Lower bound: c ed Edae (£ —) Dominating Set r — 0 1 t ot 1
et al.’s O(N/log w)-approx alg for vertex separators v" Reduction from VERTEX COVER for vertex OhNecte : ge (£ —) Dominating Se edge contrac !on reew! W
% ( 15 . deletions (Weighted) TSP Tour edge contraction 0 | 2 treewidth w 1
0 (log" n),O(,/logw))-approx. vertex deletions | | | | |
. . v (2 — €)-inapprox (assuming UGC) vertex deletions References
v' Generated tree decompositions have 0(logn) height . _ _ . _ —
: . : : : v Reduction from MINIMUM DOMINATING SET-B [1] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for domination-like problems. [5] T. Ebenlendr, P. Kolman, and J. Sgall. An approximation algorithm for bounded degree deletion,
v Pathwidth is at most width times the height of a tree decomp : . | | o |
15 _ _ or edge delet|0ns [2] N. Bansal, D. Reichman, and S. W. Umboh. Lp-based robust algorithms for noisy minor-free and bounded treewidth graphs. [6] D. Huang and S. Pettie. Approximate generalized matching: f-factors and f-edge covers.
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