
Editing to Bounded Weak c-Coloring Number:
o Used to define bounded expansion
o Characterizes bounded degeneracy 𝑐 = 1
o Lower bound:

ü 𝑜 log 𝑛 -inapprox vertex deletions, edge deletions, 
edge contractions 

ü Reduction from SET COVER, similar to reductions 
for degeneracy
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Structural Rounding Framework

Graph Family 𝒞𝝀
Edit Operation 𝝍

Vertex Deletion Edge Deletion Edge
Contraction

Bounded Degree (𝒅)
[𝒅-BDD-V, 𝒅-BDD-E]

𝑂 log 𝑑 -approx. [5]
(ln 𝑑 	− 𝐶 ⋅ ln ln 𝑑)-inapprox. 

Polynomial time [6] —

Bounded Clique Number 
(𝒃)

[𝒃-CN-V]

—
𝑜 log 𝑛 -inapprox.
when 𝑏 = Ω 𝑛
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Bounded 
Degeneracy (𝒓)
[𝒓-DE-V, 𝒓-DE-E]
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-approx. (𝜖 < 1) 
𝑜 log 𝑛 -inapprox.
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-approx. 𝜖 < D
F

ln 𝑟 	− 𝐶 ⋅ ln ln 𝑟 -inapprox. 

—

Bounded Weak 
𝒄-Coloring Number (𝒕)

[𝒕-BWE-V-𝒄, 𝒕-BWE-E-𝒄, 
𝒕-BWE-C-𝒄]

—

𝑜 𝑡 -inapprox. when 𝑡 = 𝑜 log 𝑛

—

𝑜 𝑡 -inapprox. when 𝑡 = 𝑜 log 𝑛

—

𝑜 𝑡 -inapprox.
when 𝑡 =
𝑜 log 𝑛

Bounded
Treewidth (𝒘)

[𝒘-TW-V, 𝒘-TW-E]

𝑂 logD.O 𝑛 , 𝑂 log𝑤� -approx. 
𝑜 log 𝑛 -inapprox. when 𝑤 =

Ω 𝑛
9
:

𝑂 log 𝑛 log log 𝑛 , 𝑂 log𝑤 -
approx. [2]

—

—

Bounded
Pathwidth (𝒘)

[𝒘-PW-V, 𝒘-PW-E]

𝑂 logD.O 𝑛 , 𝑂 log𝑤� ⋅ log 𝑛 -
approx. 

—

𝑂 log 𝑛 log log 𝑛 ,	
𝑂 log𝑤 ⋅ log 𝑛 -approx. [2]

—

—

Star Forest
[SF-V, SF-E]

4-approx.
2 − 𝜖 -inapprox. (UGC)

3-approx.
APX-complete

—
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Table of Editing ResultsMotivation

Some real-world networks are small perturbations of 
graphs from a structural class due to natural variations or 
noise caused by measurement error. 

Develop algorithms for such 𝛾-close to a structural class 𝒞
graphs for some 𝛾 edits (vertex deletions, edge deletions, 
edge contractions). 

v Stability: A graph minimization (resp. maximization) problem Π is stable under edit operation 𝜓 with constant 𝑐′ if 

𝑂𝑃𝑇Y 𝐺[ ≤ 𝑂𝑃𝑇Y 𝐺 + 𝑐[𝛾
(resp. 𝑂𝑃𝑇Y 𝐺[ ≥ 𝑂𝑃𝑇Y 𝐺 − 𝑐[𝛾) 

given 𝐺[ 𝛾-editable from 𝐺 under 𝜓. Π is closed under 𝜓 when 𝑐[ = 0.

v Structural Lifting: Π can be structurally lifted w.r.t. 𝜓 with constant 𝑐 if, given edit sequence 𝜓D, 𝜓F, … , 𝜓a where 𝑘 ≤ 𝛾 that edits 𝐺
into 𝐺′, a solution 𝑆′ for 𝐺′ can be converted in polytime to 𝑆 for 𝐺 such that 

𝐶𝑜𝑠𝑡Y 𝑆 ≤ 𝐶𝑜𝑠𝑡Y 𝑆[ + 𝑐 ⋅ 𝑘
(resp. 𝐶𝑜𝑠𝑡Y 𝑆 ≥ 𝐶𝑜𝑠𝑡Y 𝑆[ − 𝑐 ⋅ 𝑘).

v 𝜶, 𝜷 -approx: An alg for 𝒞g, 𝜓 -EDIT is a bicriteria 𝛼, 𝛽 -approx if number of edits is at most 𝛼 times the optimal number of edits 
into 𝒞g, and 𝜆 ≤ 𝛽 ⋅ 𝜆∗.

Structural Rounding Approximation Theorem: Suppose Π
is stable under 𝜓 with constant 𝑐′ and can be structurally 
lifted with constant 𝑐. If Π has a 𝜌 𝜆 -approx in 𝒞g and 
𝒞g, 𝜓 -EDIT has a polytime 𝛼, 𝛽 -approx, then there exists 

a polytime

1 + 𝑐[𝛼𝛿 ⋅ 𝜌 𝛽𝜆 + 𝑐𝛼𝛿 -approx
(resp. 1 − 𝑐[𝛼𝛿 ⋅ 𝜌 𝛽𝜆 − 𝑐𝛼𝛿 -approx)

for 𝛱 on any 𝛿 ⋅ 𝑂𝑃𝑇Y 𝐺 -close graph to 𝒞g.

Problem Edit Type 𝝍 𝒄′ 𝒄 Graph Class 𝓒𝝀 𝝆 𝝀
Independent Set (IS) vertex deletion 1 1 degeneracy 𝑟 1/(𝑟 + 1)
Independent Set (IS) vertex deletion 1 0 treewidth 𝑤 1 [3]

Vertex Cover (VC) vertex deletion 0 1 treewidth 𝑤 1 [3]
Feedback Vertex Set (FVS) vertex deletion 0 1 treewidth 𝑤 1 [3]

Minimum Maximal Matching (MMM) vertex deletion 0 1 treewidth 𝑤 1 [3]
Chromatic Number (CRN) vertex deletion 0 1 treewidth 𝑤 1 [3]

Independent Set (IS) edge deletion 0 1 degeneracy 𝑟 1/(𝑟 + 1)
Dominating Set (DS) edge deletion 1 0 degeneracy 𝑟 𝑂 𝑟F [7]

(ℓ −) Dominating Set (DS) edge deletion 1 0 treewidth 𝑤 1 [1, 4]
Edge (ℓ −) Dominating Set (EDS) edge deletion 1 1 treewidth 𝑤 1 [4]

(ℓ −) Dominating Set (DS) edge contraction 0 1 treewidth 𝑤 1
Edge (ℓ −) Dominating Set (EDS) edge contraction 0 1 treewidth 𝑤 1
Connected (ℓ −) Dominating Set edge contraction 0 1 treewidth 𝑤 1

Connected Edge (ℓ −) Dominating Set edge contraction 0 1 treewidth 𝑤 1
(Weighted) TSP Tour edge contraction 0 2 treewidth 𝑤 1

Structural Rounding Applicable Problems
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𝓒𝝀,𝝍 -EDIT
Input: Graph 𝐺 = 𝑉, 𝐸 , paremterized family 𝒞g of graphs, 

target parameter value 𝜆∗, edit operation 𝜓

Problem: Find 𝑘 edits 𝜓D, 𝜓F, … , 𝜓a such that 
𝜓a 𝜓a>D ⋯𝜓F 𝜓D 𝐺 ∈ 𝒞g.
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Editing to Bounded Degeneracy:
o Approximation algorithm: 

ü Local Ratio Technique by Bar-Yehuda et. al.
ü LP-based: (3, 3)-approx for edge deletion and (4, 4)-approx for vertex 

deletion
ü Integrality gap is Ω 𝑛 so cannot hope for non-bicriteria approx using 

this approach
o Lower bound:

ü 𝑜 log 𝑛 -inapprox vertex deletions distinguishing r and r+1
ü 𝑜(log 𝑟)-inapprox edge deletions distinguishing r and r+1
ü Reduction from SET COVER

Editing to Bounded Treewidth:
o Approximation algorithm: 

ü Relationship between vertex separators and treewidth
ü Combine Bodleaender’s 𝑂 log 𝑛 -approx alg for treewidth and Fiege

et al.’s 𝑂 log𝑤� -approx alg for vertex separators
ü 𝑂 logD.O 𝑛 , 𝑂 log𝑤� -approx. vertex deletions
ü Generated tree decompositions have 𝑂 log 𝑛 height
ü Pathwidth is at most width times the height of a tree decomp
ü 𝑂 logD.O 𝑛 , 𝑂 log𝑤� ⋅ log 𝑛 -approx. pathwidth vertex deletions

Editing to Treedepth 2 (Star Forests):
o Preliminary results for treedepth
o Approximation algorithm: 

ü Reduction to HITTING SET 
ü 4-approx for vertex deletion
ü 3-approx for edge deletion

o Lower bound:
ü Reduction from VERTEX COVER for vertex 

deletions
ü 2 − 𝜖 -inapprox (assuming UGC) vertex deletions
ü Reduction from MINIMUM DOMINATING SET-B

for edge deletions
ü APX-complete for edge deletions


