

STOC 2018

	[2] NC State University {tdgoodri, kaklo		avan, bian_Sunivan, aji	andergwncsu.euu			
Motivation Clique Number Degeneracy			Table of Editing Results				
Some real-world networks are small perturbations of	Weak 2-Coloring Number			Edit Operation ψ			
graphs from a structural class due to natural variations of noise caused by measurement error.	Weak c-Coloring Number Bounded Expansion Treewidth		Graph Family C_{λ}	Vertex Deletion	E	dge Deletion	Edge Contraction
Develop algorithms for such γ -close to a structural class graphs for some γ edits (vertex deletions, edge deletions)	C Planar-Minor-Free Treedepth		Bounded Degree (<i>d</i>) [<i>d</i> -BDD-V, <i>d</i> -BDD-E]	$O(\log d)$ -approx. [5] $(\ln d - C \cdot \ln \ln d)$ -inapprox.	Pol	ynomial time [6]	
edge contractions).	Star Forest		Bounded Clique Number (b)	$o(\log n)$ -inapprox.			
Structural Rounding Framework			[<i>b</i> -CN-V]	when $b = \Omega\left(n^{\frac{1}{2}}\right)$			
◆ Stability: A graph minimization (resp. maximization) problem Π is stable under edit operation ψ with constant c' if $OPT_{\Pi}(G') \leq OPT_{\Pi}(G) + c'\gamma$ (resp. $OPT_{\Pi}(G') \geq OPT_{\Pi}(G) - c'\gamma$)			Bounded Degeneracy (<i>r</i>) [<i>r</i> -DE-V, <i>r</i> -DE-E]	$\begin{pmatrix} \frac{4m-\beta rn}{m-rn}, \beta \end{pmatrix} \text{-approx.} \\ \begin{pmatrix} \frac{1}{\epsilon}, \frac{2}{1-\epsilon} \end{pmatrix} \text{-approx.} (\epsilon < 1) \\ o(\log n) \text{-inapprox.} \end{pmatrix} \begin{pmatrix} \frac{1}{\epsilon}, \frac{2}{1-2\epsilon} \end{pmatrix} \text{-approx.} (\epsilon < 1) \\ (\ln r - C \cdot \ln \ln r) \text{-inapprox.} \end{pmatrix}$			
given <i>G'</i> γ -editable from <i>G</i> under ψ . Π is closed under ψ when $c' = 0$. Structural Lifting: Π can be structurally lifted w.r.t. ψ with constant <i>c</i> if, given edit sequence $\psi_1, \psi_2,, \psi_k$ where $k \leq \gamma$ that edits <i>G</i> into <i>G'</i> , a solution <i>S'</i> for <i>G'</i> can be converted in polytime to <i>S</i> for <i>G</i> such that		s G	Bounded Weak — <i>c</i> -Coloring Number (<i>t</i>)) $o(t)$ -inapprox. when $t = o(\log n)$ $o(t)$		when $t =$
$Cost_{\Pi}(S) \leq Cost_{\Pi}(S') + c \cdot k$ $(resp. Cost_{\Pi}(S) \geq Cost_{\Pi}(S') - c \cdot k).$ (α, β) -approx: An alg for (C_{λ}, ψ) -EDIT is a bicriteria (α, β) -approx if number of edits is at most α times the optimal number of edits into C_{λ} , and $\lambda \leq \beta \cdot \lambda^{*}$. $Structural Rounding Approximation Theorem: Suppose \Pi$		_	Bounded Treewidth (<i>w</i>) [<i>w</i> -TW-V, <i>w</i> -TW-E]	$\begin{pmatrix} O(\log^{1.5} n), O(\sqrt{\log w}) \end{pmatrix} \text{-approx.} \\ O(\log n) \text{-inapprox. when } w = \\ \Omega\left(n^{\frac{1}{2}}\right) \end{pmatrix}$ $\begin{pmatrix} O(\log n \log \log n), O(\log n) \\ \text{approx. [2]} \\ - \\ \end{pmatrix}$			o(log n)
$(\mathcal{C}_{\lambda}, \psi)$ -EDIT Input: Graph $G = (V, E)$, paremterized family \mathcal{C}_{λ} of graphs, target parameter value λ^* , edit operation ψ Problem: Find k edits $\psi_1, \psi_2,, \psi_k$ such that	is stable under ψ with constant c' and can be structurally lifted with constant c . If Π has a $\rho(\lambda)$ -approx in C_{λ} and (C_{λ}, ψ) -EDIT has a polytime (α, β) -approx, then there exists a polytime		Bounded Pathwidth (<i>w</i>) [<i>w</i> -PW-V, <i>w</i> -PW-E]	$\left(O(\log^{1.5} n), O(\sqrt{\log w} \cdot \log n)\right)$ - approx.	$\begin{pmatrix} O(\log n \log \log n), \\ O(\log w \cdot \log n) \end{pmatrix}$ -approx. [2]		
$\psi_k\left(\psi_{k-1}\left(\cdots\psi_2(\psi_1(G))\right)\right) \in \mathcal{C}_{\lambda}.$	$((1 + c'\alpha\delta) \cdot \rho(\beta\lambda) + c\alpha\delta)$ -approx (resp. $((1 - c'\alpha\delta) \cdot \rho(\beta\lambda) - c\alpha\delta)$ -approx)		Star Forest [SF-V, SF-E]	4-approx. $(2 - \epsilon)$ -inapprox. (UGC)	3-approx. APX-complete		
Objective: Minimize <i>k</i> and λ where $\lambda \ge \lambda^*$	or Π on any $(\delta \cdot OPT_{\Pi}(G))$ -close graph to \mathcal{C}_{λ} .		Structural Rounding Applicable Problems				
Editing Results: Upper and Lower Bounds			Problem	Edit Type ψ	<i>C</i> ′ <i>C</i>	Graph Class \mathcal{C}_{λ}	$\rho(\lambda)$
			Independent Set (IS	5) vertex deletion	1 1	degeneracy r	1/(r+1)
 Editing to Bounded Degeneracy: Approximation algorithm: 	 Editing to Bounded Weak <i>c</i>-Coloring Number: Used to define bounded expansion 		Independent Set (IS) vertex deletion	1 0	treewidth w	1 [3]
✓ Local Ratio Technique by Bar-Yehuda et. al.	• Characterizes bounded degeneracy $c = 1$		Vertex Cover (VC)	vertex deletion	0 1	treewidth w	1 [3]
✓ LP-based: (3, 3)-approx for edge deletion and (4, 4)-approx			Feedback Vertex Set (F		0 1	treewidth w	1 [3]
deletion \checkmark Integrality gap is $\Omega(n)$ so cannot hope for non-bicriteria appr	ox using $\checkmark o(\log n)$ -inapprox vertex deletions, edge deletions deletions, edge deletions	tions,	Minimum Maximal Matching		0 1	treewidth w	1 [3]
this approach	✓ Reduction from SET COVER, similar to reduct	ctions	Chromatic Number (C		0 1	treewidth w	1 [3]
• Lower bound:	for degeneracy		Independent Set (IS	<u>, </u>	0 1	degeneracy r	$\frac{1/(r+1)}{2}$
✓ $o(\log n)$ -inapprox vertex deletions distinguishing r and r+1	Editing to Treedepth 2 (Star Forests):		Dominating Set (DS			degeneracy r	$O(r^2)$ [7]
 ✓ o(log r)-inapprox edge deletions distinguishing r and r+1 ✓ Reduction from SET COVER 	 Preliminary results for treedepth 		$(\ell -)$ Dominating Set (treewidth w	1 [1, 4]
	• Approximation algorithm:		Edge $(\ell -)$ Dominating Set (treewidth w treewidth w	1 [4]
 Editing to Bounded Treewidth: Approximation algorithm: 	 ✓ Reduction to HITTING SET ✓ 4-approx for vertex deletion 		$(\ell -)$ Dominating Set (Edge $(\ell -)$ Dominating Se			treewidth w	1
 Relationship between vertex separators and treewidth 	 ✓ 4-approx for vertex deletion ✓ 3-approx for edge deletion 		Connected $(\ell -)$ Dominating Se			treewidth w	1
✓ Combine Bodleaender's $O(\log n)$ -approx alg for treewidth a	nd Fiege O Lower bound:		Connected Edge $(\ell -)$ Dominat		0 1	treewidth w	1
et al.'s $O(\sqrt{\log w})$ -approx alg for vertex separators	✓ Reduction from VERTEX COVER for vertex		(Weighted) TSP Tou		0 2	treewidth w	1
✓ $(O(\log^{1.5} n), O(\sqrt{\log w}))$ -approx. vertex deletions	deletions $\sqrt{(2 - \epsilon)}$ -inapprox (assuming UGC) vertex del	etions		References			
✓ Generated tree decompositions have $O(\log n)$ height ✓ $(2 - \epsilon)$ -inapprox (assuming UGC) vertex deletions ✓ Reduction from MINIMUM DOMINATING SET-B			1] J. Alber and R. Niedermeier. Improved tree decomposition ba			J. Sgall. An approximation algorithm for bounded	degree deletion,
 Pathwidth is at most width times the height of a tree decom 	for edge deletions		2] N. Bansal, D. Reichman, and S. W. Umboh. Lp-based robust			ximate generalized matching: f -factors and f -ec	
✓ $(O(\log^{1.5} n), O(\sqrt{\log w} \cdot \log n))$ -approx. pathwidth vertex del	etions APX-complete for edge deletions					xinate generalized matering. J ractore and J ee	•

Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

Erik D. Demaine¹, Timothy D. Goodrich², Kyle Kloster², Brian Lavallee², Quanquan C. Liu¹, Blair D. Sullivan², Ali Vakilian¹, and Andrew van der Poel² [1] MIT CSAIL {edemaine, quanquan, vakilian}@mit.edu

