Parallel Batch-Dynamic Algorithms for *k*-Core Decomposition and Related Problems

Quanquan C. Liu Northwestern University

Julian Shun MIT

Shangdi Yu MIT

Laxman Dhulipala University of Maryland

k-Core

k-Core Decomposition

k-Core Decomposition

Approx. Core Number : 2 Meens bre(v) Approx. core number of every node: 3

c-Approx. Core Number: Value lower bounded by core(v)/c and upper bounded by c * core(v)

Applications of k-Core Decomposition

- Graph clustering
- Community detection
- Graph visualizations
- Protein network analysis
- Modeling of disease spread
- Approximating network centrality measures
- Much interest in the machine learning, database, graph analytics, and other communities

Applications of k-Core Decomposition

- Graph clustering
- Commu Static, Sequential Setting: O(n) time
- Graph visualizations
- Protein networ
- Modeling of di
- Approximating measures
 Too Much Time to Process Statically and Sequentially
- Much interest in the machine learning, database, graph analytics, and other communities

Billions or Even Trillions of Edges

Large Graphs

~ 1.8 billion edges

- ~ 2 billion edges
- Common ~ 128 billion edges Crawl
- Google ~ 6 trillion edges

Graphs are rapidly changing:

- 3M emails/sec
- 486K WhatApp messages/sec
- 500M tweets/day
- 547K new websites/day

Work-Depth Model

• Work:

- Total number of operations executed by algorithm
- *Work-efficient*: work asymptotically the same as *best-known* sequential algorithm
- Depth:
 - Longest chain of sequential dependencies in algorithm
- Other Characteristics:
 - Arbitrary forking
 - Concurrent read, concurrent write to the same shared memory

Batch-Dynamic Model Definition

Batch-Dynamic Graph Algorithms

- Triangle counting [Ediger et al. '10, Makkar et al. '17, Dhulipala et al. '20]
- Euler Tour Trees [Tseng et al. '19]
- Connected Components [Ferragina and Lucio '94, McColl et al. '13; Acar et al. '19, Nowicki and Onak '21]
- Rake-Compress Trees [Acar et al. '20]
- Incremental Minimum Spanning Trees [Anderson et al. '20]
- Minimum Spanning Forest/Graph Clustering [Nowiki and Onak '21, Tseng et al. '22]
- Graph Connectivity [Dhulipala et al. '20]
- Maximal Matching [Nowicki and Onak '21]

- Dynamic exact *k*-core decomposition:
 - Ω(n) work, Ω(n) depth, parallel [Aridhi et al '16, Gabert et al. '21, Hua et al. '20, Jin et al. '18, Wang '17]
 - One update can cause $\Omega(n)$ coreness changes

- Dynamic exact *k*-core decomposition:
 - Ω(n) work, Ω(n) depth, parallel [Aridhi et al '16, Gabert et al. '21, Hua et al. '20, Jin et al. '18, Wang '17]
 - One update can cause $\Omega(n)$ coreness changes

- Dynamic exact *k*-core decomposition:
 - Ω(n) work, Ω(n) depth, parallel [Aridhi et al '16, Gabert et al. '21, Hua et al. '20, Jin et al. '18, Wang '17]
 - One update can cause $\Omega(n)$ coreness changes

- Dynamic exact k-core decomposition:
 - Ω(n) work, Ω(n) depth, parallel [Aridhi et al '16, Gabert et al. '21, Hua et al. '20, Jin et al. '18, Wang '17]
 - One update can cause $\Omega(n)$ coreness changes

- Dynamic exact *k*-core decomposition:
 - Ω(n) work, Ω(n) depth, parallel [Aridhi et al '16, Gabert et al. '21, Hua et al. '20, Jin et al. '18, Wang '17]
 - One update can cause $\Omega(n)$ coreness changes

- Dynamic approximate *k*-core decomposition:
 - $O(\log^2 n)$ time amortized, sequential, $(2 + \varepsilon)$ -approximation [Sun et al. '20]
 - Can accumulate error, charge time to updates
 - Threshold peeling procedure

- Dynamic approximate *k*-core decomposition:
 - $O(\log^2 n)$ time amortized, sequential, $(2 + \varepsilon)$ -approximation [Sun et al. '20]
 - Can accumulate error, charge time to updates
 - Threshold peeling procedure

Does not use parallelism One update at a time

- Dynamic approximate *k*-core decomposition:
 - $O(\log^2 n)$ time amortized, sequential, $(2 + \varepsilon)$ -approximation [Sun et al. '20]
 - Can accumulate error, charge time to updates
 - Threshold peeling procedure

Caveat: amortized $O(\log^2 n)$ depth, worst-case $\Omega(n)$ depth

Want: worst-case poly(log *n*) depth

• $(2 + \epsilon)$ -approximation for coreness of every vertex

- $(2 + \epsilon)$ -approximation for coreness of every vertex
- $O(B \log^2 n)$ amortized work and $O(\log^2 n \log \log n)$ depth with high probability, size *B* batch

- $(2 + \epsilon)$ -approximation for coreness of every vertex
- $O(B \log^2 n)$ amortized work and $O(\log^2 n \log \log n)$ depth with high probability, size *B* batch
- Is work-efficient, matches Sun et al. '20

- $(2 + \epsilon)$ -approximation for coreness of every vertex
- $O(B \log^2 n)$ amortized work and $O(\log^2 n \log \log n)$ depth with high probability, size *B* batch
- Is work-efficient, matches Sun et al. '20
- Based on a parallel level data structure (PLDS)

Batch Dynamic k-Core Decomposition + Others!

- $(2 + \epsilon)$ -approximation for coreness of every vertex
- $O(B \log^2 n)$ amortized work and $O(\log^2 n \log \log n)$ depth with high probability, size *B* batch
- Is work-efficient, matches Sun et al. '20
- Based on a parallel level data structure (PLDS)

Static k-Core Decomposition Low Out-Degree Orientation Maximal Matching Clique Counting Vertex Coloring

Sequential Level Data Structures for Dynamic Problems

- Maximal Matching [Baswana-Gupta-Sen 18, Solomon '16]
- (Δ + 1)-Coloring [Bhattacharya-Chakrabarty-Henzinger-Nanongkai '18, Bhattacharya-Grandoni-Kulkarni-L-Solomon '19]
- Clustering [Wulff-Nilsen '12]
- Low out-degree orientation [Solomon-Wein 20, Henzinger-Neumann-Weiss '20]
- Densest subgraph [Bhattacharya-Henzinger-Nanongkai-Tsourakakis '15]

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015 Henzinger-Neumann-Weiss 2020

Bhattacharya-Henzinger-Nanongkai-Tsourakakis STOC 2015 and Henzinger-Neumann-Weiss 2020
Large sequential dependencies

Large depth

Large sequential dependencies

Large depth

Large sequential dependencies

Large depth

Large sequential dependencies

Large depth

Large sequential dependencies

Large depth

Large sequential dependencies

Large depth

Deletions

Deletions

Deletions

Deletions

11 dl: 8 10 9 8 Calculate *desire-level*: dl: 5 7 dl: 5 closest level that satisfies cutoffs 6 5 4 3 2 1

Iterate from **bottommost level to top level** and move vertices to desire-level

Only lower bound cutoff, $(1 + \epsilon)^i$, ever violated.

Deletions

Iterate from **bottommost level to top level** and move vertices to desire-level

Only lower bound cutoff, $(1 + \epsilon)^i$, ever violated.

Deletions

Iterate from **bottommost level to top level** and move vertices to desire-level

Only lower bound cutoff, $(1 + \epsilon)^i$, ever violated.

Deletions

Iterate from **bottommost level to top level** and move vertices to desire-level

Only lower bound cutoff, $(1 + \epsilon)^i$, ever violated.

Deletions

11 dl: 6 10 dl: 6 9 8 Calculate *desire-level*: 7 closest level that satisfies cutoffs 6 5 4 3 2 1

Iterate from **bottommost level to top level** and move vertices to desire-level

Only lower bound cutoff, $(1 + \epsilon)^i$, ever violated.

Deletions

11 dl: 6 10 dl: 6 9 8 Calculate *desire-level*: 7 closest level that satisfies cutoffs 6 5 4 3 2 1

Iterate from **bottommost level to top level** and move vertices to desire-level

Only lower bound cutoff, $(1 + \epsilon)^i$, ever violated.

Deletions

11 10 Iterate from **bottommost** 9 level to top level and move 8 Calculate *desire-level*: vertices to desire-level 7 closest level that satisfies cutoffs 6 5 Only lower bound 4 cutoff, $(1 + \epsilon)^i$, ever 3 violated. 2

SPAA 2022

1

Vertices need to move at 11 most ONCE, unlike 10 sequential LDS! Iterate from **bottommost** 9 level to top level and move 8 Calculate *desire-level*: vertices to desire-level 7 closest level that satisfies cutoffs 6 5 Only lower bound 4 cutoff, $(1 + \epsilon)^i$, ever 3 violated. 2 1

- Set the coreness estimate: $(1 + \delta)^{max(\lfloor (level(v)+1)/(4 \lceil \log_{1+\delta}n \rceil) \rfloor 1, 0)}$
- Each group has 4 $\lceil \log_{1+\delta} n \rceil$ levels

- Set the coreness estimate: $(1 + \delta)^{max(\lfloor (level(v)+1)/(4 \lceil \log_{1+\delta}n \rceil) \rfloor 1, 0)}$
- Each group has 4 $\lceil \log_{1+\delta} n \rceil$ levels
- Intuitively, exponent is group number of highest group where node above topmost level

- Set the coreness estimate: $(1 + \delta)^{max(\lfloor (level(v)+1)/(4 \lceil \log_{1+\delta}n \rceil) \rfloor 1, 0)}$
- Each group has 4 $\lceil \log_{1+\delta} n \rceil$ levels
- Intuitively, exponent is group number of highest group where node above topmost level

- Set the coreness estimate: $(1 + \delta)^{max(\lfloor (level(v)+1)/(4 \lceil \log_{1+\delta}n \rceil) \rfloor 1, 0)}$
- Each group has 4 $\lceil \log_{1+\delta} n \rceil$ levels
- Intuitively, exponent is group number of highest group where node above topmost level

- Set the coreness estimate: $(1 + \delta)^{max(\lfloor (level(v)+1)/(4 \lceil \log_{1+\delta}n \rceil) \rfloor 1, 0)}$
- Each group has 4 $\lceil \log_{1+\delta} n \rceil$ levels
- Intuitively, exponent is group number of highest group where node above topmost level

• $O(\log^2 n)$ levels

- $O(\log^2 n)$ levels
 - O(log log n) depth per level to calculate desire-levels using doubling search

- $O(\log^2 n)$ levels
 - O(log log n) depth per level to calculate desire-levels using doubling search
 - O(log*n) depth with high probability for hash table operations

- $O(\log^2 n)$ levels
 - O(log log n) depth per level to calculate desire-levels using doubling search
 - O(log*n) depth with high probability for hash table operations
- Total depth: $O(\log^2 n \log \log n)$

- $O(\log^2 n)$ levels
 - O(log log n) depth per level to calculate desire-levels using doubling search
 - O(log*n) depth with high probability for hash table operations
- Total depth: $O(\log^2 n \log \log n)$
- $O(B \log^2 n)$ amortized work is based on potential argument
 - Vertices and edges store potential based on their levels

Experimental Implementation Details

• Designed an optimized multicore implementation
Experimental Implementation Details

- Designed an optimized multicore implementation
- Used parallel primitives and data structures from the Graph Based Benchmark Suite [Dhulipala et al. '20]

Experimental Implementation Details

- Designed an optimized multicore implementation
- Used parallel primitives and data structures from the Graph Based Benchmark Suite [Dhulipala et al. '20]
- Maintain concurrent hash tables for each vertex v
 - One for storing neighbors on levels \geq level(v)
 - One for storing neighbors on every level i in [0, level(v)-1]

Experimental Implementation Details

- Designed an optimized multicore implementation
- Used parallel primitives and data structures from the Graph Based Benchmark Suite [Dhulipala et al. '20]
- Maintain concurrent hash tables for each vertex v
 - One for storing neighbors on levels \geq level(v)
 - One for storing neighbors on every level i in [0, level(v)-1]
- Moving vertices around in the PLDS requires carefully updating these hash tables for work-efficiency

Tested Graphs

Graphs from Stanford SNAP database, DIMACS Shortest Paths challenge, and Network Repository—including some temporal

Graph	Num. Vertices	Num. Edges	Max <i>k</i>
dblp	425,957	2,099,732	101
brain-network	784,262	267,844,669	1200
wikipedia	1,140,149	2,787,967	124
youtube	1,138,499	5,980,886	51
stackoverflow	2,601,977	28,183,518	163
livejournal	4,847,571	85,702,474	329
orkut	3,072,627	234,370,166	253
usa-central	14,081,816	16,933,413	2
usa-road	23,072,627	28,854,312	3
twitter	41,652,231	1,202,513,046	2484
friendster	65,608,366	1,806,067,135	304

Tested Graphs

Graphs from Stanford SNAP database, DIMACS Shortest Paths challenge, and Network Repository—including some temporal

Graph	Num. Vertices	Num. Edges	Max <i>k</i>
dblp	425,957	2,099,732	101
brain-network	784,262	267,844,669	1200
wikipedia	1,140,149	2,787,967	124
youtube	1,138,499	5,980,886	51
stackoverflow	2,601,977	28,183,518	163
livejournal	4,847,571	85,702,474	329
orkut	3,072,627	234,370,166	253
usa-central	14,081,816	16,933,413	2
usa-road	23,072,627	28,854,312	3
twitter	41,652,231	1,202,513,046	2484
friendster	65,608,366	1,806,067,135	304

Experiments

- c2-standard-60 Google Cloud instances
 - 30 cores with two-way hyper-threading
 - 236 GB memory
- m1-megamem-96 Google Cloud instances
 - 48 cores with two-way hyperthreading
 - 1433.6 GB memory
- Timeout: 3 hours
- 3 different types of batches:

Experiments

- c2-standard-60 Google Cloud instances
 - 30 cores with two-way hyper-threading
 - 236 GB memory
- m1-megamem-96 Google Cloud instances
 - 48 cores with two-way hyperthreading
 - 1433.6 GB memory
- Timeout: 3 hours
- 3 different types of batches:
 - All Batched Insertions
 - All Batched Deletions
 - Mixed Batches of Both Insertions and Deletions

Experiments

- c2-standard-60 Google Cloud instances
 - 30 cores with two-way hyper-threading
 - 236 GB memory
- m1-megamem-96 Google Cloud instances
 - 48 cores with two-way hyperthreading
 - 1433.6 GB memory
- Timeout: 3 hours
- 3 different types of batches:
 - All Batched Insertions
 - All Batched Deletions
 - Mixed Batches of Both Insertions and Deletions

SPAA 2022

Improvements across all experiments!

Benchmarks

- Sun et al. TKDD: sequential, approx., dynamic algorithm
- LDS: sequential, approx., dynamic LDS of Henzinger et al.
- Zhang and Yu SIGMOD: sequential, exact, dynamic algorithm
- Hua et al. TPDS: parallel, exact, dynamic algorithm

Versions of PLDS

- PLDS: exact theoretical algorithm
- PLDSOpt: code-optimized PLDS

Benchmarks

- Sun et al. TKDD: sequential, approx., dynamic algorithm
- LDS: sequential, approx., dynamic LDS of Henzinger et al.
- Zhang and Yu SIGMOD: sequential, exact, dynamic algorithm
- Hua et al. TPDS: parallel, exact, dynamic algorithm

Versions of PLDS

- PLDS: exact theoretical algorithm
- PLDSOpt: code-optimized PLDS

Key Optimization Feature: **Reduce number of levels** per group

DBLP: 425K vertices, 2.1M edges

LJ (LiveJournal): 4.8M vertices, 85.7M edges

Number of Hyper-Threads

Faster than all other algorithms at 4 cores!

PLDSOpt: 33.02x self-relative speedup PLDS: 26.46x self-relative speedup

Hua: 3.6x self-relative speedup

Speedups On a Variety of Graphs

Speedups against dynamic benchmarks: Hua, Zhang, and Sun

Speedups on all graphs against all benchmarks

Speedups up to: 91.95x for Hua, 35.59x for Sun, 723.72x for Zhang

Speedups On a Variety of Graphs

Speedups against dynamic benchmarks: Hua, Zhang, and Sun

Speedups on all graphs against all benchmarks

Graphs ordered by size (left to right)

Speedups up to: 91.95x for Hua, 35.59x for Sun, **723.72x** for Zhang

Speedups Against Parallel Static Algorithms

- Parallel exact k-core decomposition [Dhulipala et al. '18]
- Parallel $(2 + \epsilon)$ -approximate *k*-core decomposition

Speedups Against Parallel Static Algorithms

- Parallel exact k-core decomposition [Dhulipala et al. '18]
- Parallel $(2 + \epsilon)$ -approximate *k*-core decomposition

We achieve speedups for all but the smallest graphs Speedups of up to 122x for Twitter (1.2B edges) and Friendster (1.8B edges)

Other Results

Problem	Approx	Work	Depth
Static <i>k</i> -Core	2 + ε	O(m+n)	$\tilde{O}(\log^2 n)$
Low Out-Degree	4 + ε	$O(B \log^2 n)$	$\tilde{O}(\log^3 n)$
Maximal Matching	Maximal	$O(B (k + \log^2 n))$	$\tilde{O}(\log \Delta \log^2 n)$
Clique Counting	Exact	$O(B (k^{c-2} + \log^2 n))$	$\tilde{O}(\log^2 n)$
Explicit Coloring	$O(k \log n)$	$O(B \log^2 n)$	$\tilde{O}(\log^2 n)$
Implicit Coloring	$O(2^k)$	$O(B \log^3 n)$	$\tilde{O}(\log^2 n)$

PLDS to Other Results

k-Core Decomposition $O(\alpha)$ Out-Degree Orientation

$O(\alpha \log n)$ -Coloring

Maximal Matching k-Clique Counting Implicit $O(2^{\alpha})$ -Coloring

Other Results + Future Work Implementations!

Problem	Approx	Work	Depth
Static <i>k</i> -Core	2 + ε	O(m+n)	$\tilde{O}(\log^2 n)$
Low Out-Degree	$4 + \varepsilon$	$O(B \log^2 n)$	$\tilde{O}(\log^3 n)$
Maximal Matching	Maximal	$O(B (k + \log^2 n))$	$\tilde{O}(\log \Delta \log^2 n)$
Clique Counting	Exact	$O(B (k^{c-2} + \log^2 n))$	$\tilde{O}(\log^2 n)$
Explicit Coloring	$O(k \log n)$	$O(B \log^2 n)$	$\tilde{O}(\log^2 n)$
Implicit Coloring	$O(2^k)$	$O(B \log^3 n)$	$\tilde{O}(\log^2 n)$

Conclusion

- New parallel level data structure (PLDS)
- Parallel batch-dynamic algorithms for k-core decomposition and related problems (low out-degree orientation, maximal matching, clique counting, graph coloring)
- Our k-core algorithm achieves significant improvements over stateof-the-art solutions in practice
- Source code available at <u>https://github.com/qqliu/batch-dynamic-kcore-decomposition</u>

Extra Slides

By Induction:

By Induction:

nodes at or above level of v is: $\geq (1 + \epsilon)^i$

By Induction:

Assume for Contradiction:

$$c(v) < \frac{(1+\epsilon)^i}{2.5}$$

Pruning Procedure Remove all *w* where $d_{S_j}(w) < \frac{(1+\epsilon)^i}{2.5}$

nodes at or above level of v is: $\geq (1 + \epsilon)^i$

By Induction:

edges must be pruned

$$\left(\frac{(1+\epsilon)^i}{2}\right)^{j-1} \le n$$

$$j \leq \log_{(1+\epsilon)^i/2}(n)$$

Assume for Contradiction: $c(v) < \frac{(1+\epsilon)^i}{2.5}$

Pruning Procedure Remove all *w* where $d_{S_j}(w) < \frac{(1+\epsilon)^i}{2.5}$

nodes at or above level of v is: $\geq (1 + \epsilon)^i$

By Induction:

At least
$$\left(\frac{(1+\epsilon)^i}{2}\right)^j$$

edges must be pruned

$$\left(\frac{(1+\epsilon)^i}{2}\right)^{j-1} \le n$$

$$j \leq \log_{(1+\epsilon)^{i}/2} (n)$$

Assume for Contradictions
$$c(v) < \frac{(1+\epsilon)^{i}}{2.5}$$

Pruning Procedure Remove all *w* where $d_{S_j}(w) < \frac{(1+\epsilon)^i}{2.5}$

nodes at or above level of v is: $\geq (1 + \epsilon)^i$

Run out of vertices before first level of the group.

By Induction:

At least
$$\left(\frac{(1+\epsilon)^i}{2}\right)^j$$

edges must be pruned

$$\left(\frac{(1+\epsilon)^i}{2}\right)^{j-1} \le n$$

$$j \leq \log_{(1+\epsilon)^i/2}(n)$$

Must be the case that
 $c(v) \geq \frac{(1+\epsilon)^i}{25}$

2.5

Pruning Procedure Remove all w where $d_{S_i}(w) < \frac{(1+\epsilon)^i}{2.5}$

nodes at or above level of v is: $\geq (1 + \epsilon)^i$

Run out of vertices before first level of the group.