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Publishing Sensitive Graph Information

• Potentially sensitive connections between individuals 
published as graphs 

• Social relationships

• Financial transactions

• Disease (e.g. COVID) transmission

• Search data

• Email and cell phone communication
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networks
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Private Analysis of Graph Data

Trusted Curator

Answers

Queries

Graph 𝑮 Users

Researchers
Government

Business
Malicious 

Adversaries
Answers satisfy Differential Privacy
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Notation

• 𝜀 is privacy parameter, not approximation factor

• DP stands for differential privacy, not dynamic 
programming

• 𝜂 is approximation factor

• 𝑆 represents a stream of edge updates

• 𝑛 number of vertices, 𝑚 number of edges in entire 
stream

• UB = upper bound, LB = lower bound
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Differential Privacy

Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

A (randomized) algorithm 𝒜 is 𝜺-differentially private if for all 
pairs of neighbors 𝐺 and 𝐺′ and all sets of possible outputs 𝑌:

𝑒−𝜀 ≤
Pr 𝒜 𝐺 ∈ 𝑌

Pr 𝒜 𝐺′ ∈ 𝑌
≤ 𝑒𝜀
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Neighboring Graphs

Edge-neighboring graphs 
differ in 1 edge 

𝐺 𝐺′

Node-neighboring graphs 
differ in all edges adjacent to 

any 1 node

𝐺 𝐺′
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Online Streaming Graphs

• Continuously release accurate graph statistics after each 
update while using sublinear space

• Independent set [Halldórsson-Halldórsson-Losievskaja-
Szegedy ’16, Cormode-Dark-Konrad ’18]

• Dominating set and matching [Chen-Chitnus-Eades-Wirth 
‘23]

• Edge coloring [Ghosh-Stoeckl ‘23]
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Continual Release Model [DNPR10, CSS11]

• Given a stream of 𝑻 edge updates (insertions and deletions), 
produce a vector of 𝑻 outputs, one after every update

• Vector of outputs is 𝜺-differentially private on 
neighboring streams

• Edge-neighboring and node-neighboring streams

• Focus on insertion-only streams

• An update is either an edge insertion or ⊥
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Neighboring Streams

Edge-neighboring streams differ in 1 edge insertion 
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Neighboring Streams

Edge-neighboring streams differ in 1 edge insertion 
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Node-neighboring streams differ in all edge insertions adjacent to 1 vertex 
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Challenges in the Continual Release Model

• In static setting, only one release

• Unlike static setting, 𝑻 releases in continual release

• If edge that differs occurs early in the stream, each release 
loses privacy

• Composition over 𝑻 releases could result in 𝑂
𝑇

𝜀
 error
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• Release numerical valued solutions for many graph problems 
[Song-Little-Mehta-Vinterbo-Chaudhuri ‘18, Fichtenberger-
Henzinger-Ost ‘21, Jain-Smith-Wagaman ’24]
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Previous Work in Graph Continual Release

• Release numerical valued solutions for many graph problems 
[Song-Little-Mehta-Vinterbo-Chaudhuri ‘18, Fichtenberger-
Henzinger-Ost ‘21, Jain-Smith-Wagaman ’24]

• Minimum spanning tree size

• Minimum cut size

• Maximum matching size

• Edge count

• Degree histogram

• Triangle count

• 𝑘-star count
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Previous Work in Graph Continual Release

• Requires function 𝑓 𝐺𝑡  computing the exact value of the counts

• Function takes induced subgraph 𝑡 prefix, 𝐺𝑡, and outputs value

• Compute difference sequence 𝑓 𝐺𝑡 − 𝑓 𝐺𝑡−1  and add Laplace 
noise with sensitivity of distance sequence [SLMVC18, FHO21]

• Prefix sum of difference sequence then is approximate solution

• Binary tree mechanism and SVT reduces additive error to 
poly log 𝑛

𝜀
 

[FHO21]
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Previous Work in Graph Continual Release
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Previous Work in Graph Continual Release

• DP on node-neighboring streams [SLMVC18, FHO21, JSW24]:

 

• Requires bounded degree graph streams for poly(log 𝑛) 
additive error [SLMVC18, FHO21]

• Or nearly bounded degree graph streams where number of 
nodes with unbounded degree is at most poly(log 𝑛) [JSW24]
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Previous Work in Graph Continual Release

• Caveat 1: exact values require storing all edges in stream

• Cannot achieve sublinear space guarantees in the number 
of edges as in non-private streaming algorithms

• Caveat 2: Can return only value of solution instead of vertex 
subsets

• Caveat 3: Can return non-trivial node-privacy guarantees for 
(nearly) bounded-degree streams
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Our Contributions

• First continual release algorithm for 𝑘-core decomposition

Sublinear space continual release graph algorithms

Returns vertex subset solutions in continual release

Node-private algorithms for bounded arboricity 
graphs in continual release
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Our Contributions: Densest Subgraph

• Find an induced subgraph 𝑆 ⊆ 𝐺 with maximum induced 

density, max
𝑆⊆𝐺

𝐸 𝑆

𝑉 𝑆
 

𝑆 Densest subgraph 

is 𝑆 with density 
3

2
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Our Contributions: Densest Subgraph

Static
[DLRSS22, DLL23, DKLV24]

• Vertex Subset

• UB: 1 + 𝜂,
log4 𝑛

𝜀

• LB: 𝛽, Ω
1

𝛽

log 𝑛

𝜀

Continual Release
[FHO21, JSW24]

• Density value-only
• Θ 𝑚  space

• UB: 1 + 𝜂,
log2 𝑛

𝜀

Non-Private
[MTVV15, EHW16]

• 1 + 𝜂, 0 , ෨𝑂(𝑛) 

Our Results

• Vertex Subset

• ෩𝑶
𝒏

𝜺
 space

• UB: 𝟏 + 𝜼,
log𝟓𝒏

𝜺

Edge-DP
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Our Contributions: 𝑘-Core Decomposition

• Decomposition of nodes of 𝐺 into cores where each 𝑘-core is a 
maximal induced subgraph with induced degree at least 𝑘

1-Core

3-Core Graph contains a 
1-core and 3-core
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Our Contributions: 𝑘-Core Decomposition

Static
[DLL23, HSZ24]

• UB: 1, 𝑂
log 𝑛

𝜀

• LB: 𝛽, Ω
log(𝑛)

𝜀𝛽

Continual 
Release

• None

Non-Private
[Esfandiari-Lattanzi-

Mirrokni ‘18]

• 1 + 𝜂, 0 , 
෨𝑂(𝑛) space

Our Results

• ෩𝑶
𝒏

𝜺
 space

• UB: 𝟐 + 𝜼,
log𝟑 𝒏

𝜺

Edge-DP
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Our Contributions: Maximum Matching Size

• Find a matching (pairing of nodes where no node is paired with 
more than one other node) of maximum size

Maximum 
matching size: 3 
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Our Contributions: Maximum Matching Size

• Find a matching (pairing of nodes where no node is paired with 
more than one other node) of maximum size

Maximum 
matching size: 3 

Cannot differentially 
privately release set of 
edges in the matching
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Our Contributions: Maximum Matching Size

Our Results

• 𝑶
poly(log 𝒏)

𝜺
 space

• UB: 𝟏 + 𝜼 (𝟐 + ෥𝜶),
log𝟑 𝒏

𝜺

Continual Release
[FHO21, JSW24]

• Θ 𝑚  space

• UB: 1 + 𝜂,
log2 𝑛

𝜀

• LB: 1, Ω log 𝑛

Non-Private
[McGregor-Voronikova ‘18]

• 1 + 𝜂 (2 + ෤𝛼), 𝑂(log 𝑛) 

Edge-DP
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Our Contributions: Maximum Matching Size

Continual Release
[FHO21, JSW24]

• Θ 𝑚  space

• UB: 1 + 𝜂,
poly log 𝑛

𝜀

• LB: 1, Ω log 𝑛

Non-Private
[McGregor-Voronikova ‘18]

• 1 + 𝜂 (2 + ෤𝛼), 𝑂(log 𝑛) 

Our Results

• 𝑶
log3 𝑛

𝜺
 space

• UB: 𝟏 + 𝜼 (𝟐 + ෥𝜶),
log𝟑 𝒏

𝜺

෥𝜶 is a public bound 
on the arboricity

Continual Release
[FHO21, JSW24]

• Θ 𝑚  space

• UB: 1 + 𝜂,
log2 𝑛

𝜀

• LB: 1, Ω log 𝑛

Non-Private
[McGregor-Voronikova ‘18]

• 1 + 𝜂 (2 + ෤𝛼), 𝑂(log 𝑛) 

Edge-DP
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Our Contributions: Maximum Matching Size

Continual Release
[FHO21, JSW24]

• Θ 𝑚  space

• UB: 1 + 𝜂,
log2 𝑛

𝜀

• LB: 1, Ω log 𝑛

Our Results

• 𝑶 𝒏෥𝜶  space

• UB: 𝟏 + 𝜼,
෥𝜶 log2 𝑛

𝜺

Node-DP
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Our Contributions: Implicit Vertex Cover

• Find a minimum sized set of vertices where every edge has at 
least one endpoint in the set

Minimum vertex 
cover size: 4 
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Our Contributions: Implicit Vertex Cover

• Find a minimum sized set of vertices where every edge has at 
least one endpoint in the set

Minimum vertex 
cover size: 4 

Implicit Vertex Cover 
releases information such 

that every edge knows 
which vertex covers it
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Our Contributions: Implicit Vertex Cover

Static
[GLMRT10]

• None for Node-DP
• Edge-DP:

• UB: 2 +
16

𝜀
, 0

• LB: Ω
1

𝜀
, 0

Continual 
Release

• None

Our Results (One Shot)

• 𝑶 𝒏෥𝜶  space
• UB:

൭

൱

𝟑 + 𝜼

+ 𝑶
෥𝜶

𝜺
, 𝑶

෥𝜶 log 𝒏

𝜺

Node-DP
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Fully Dynamic Lower Bounds

Continual Release
[FHO21]

• Matching size, triangle 
count

• LB: 1, Ω log 𝑇

Our Results

• Matching size, triangle 
count, connected 
components

• LB: 𝟏, min
𝒏

𝜺
,

𝑻𝟏/𝟒

𝜺𝟑/𝟒

Edge-DP
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• Randomized approaches include various edge sampling 
algorithms



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Graph sparsification finds a smaller subgraph of the input 
graph

• Determine property of the sparsified graph as an approximate 
answer of the original graph

• Sparsification can be deterministic or randomized

• Randomized approaches include various edge sampling 
algorithms



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Graph sparsification finds a smaller subgraph of the input 
graph

• Determine property of the sparsified graph as an approximate 
answer of the original graph

• Sparsification can be deterministic or randomized

• Randomized approaches include various edge sampling 
algorithms



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Graph sparsification finds a smaller subgraph of the input 
graph

• Determine property of the sparsified graph as an approximate 
answer of the original graph

• Sparsification can be deterministic or randomized

• Randomized approaches include various edge sampling 
algorithms



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Previous work used sparsification in DP

• Static DP setting [Upadhyay ’13, Arora-Upadhyay ‘19] 

• Sliding window DP model [Arora-Upadhyay-Upadhyay ‘21]



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Previous work used sparsification in DP

• Static DP setting [Upadhyay ’13, Arora-Upadhyay ‘19] 

• Sliding window DP model [Arora-Upadhyay-Upadhyay ‘21]

• Challenging in the continual release model

• Error can compound over the stream



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Previous work used sparsification in DP

• Static DP setting [Upadhyay ’13, Arora-Upadhyay ‘19] 

• Sliding window DP model [Arora-Upadhyay-Upadhyay ‘21]

• Challenging in the continual release model

• Error can compound over the stream

• Time-aware projections [JSW24] takes an arbitrary stream 
and produces: 



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Previous work used sparsification in DP

• Static DP setting [Upadhyay ’13, Arora-Upadhyay ‘19] 

• Sliding window DP model [Arora-Upadhyay-Upadhyay ‘21]

• Challenging in the continual release model

• Error can compound over the stream

• Time-aware projections [JSW24] takes an arbitrary stream 
and produces: 

• Stream satisfying degree bound ෩𝐷



Simons Institute Sublinear Graph Simplification 2024

Main Technique: Graph Sparsification

• Previous work used sparsification in DP

• Static DP setting [Upadhyay ’13, Arora-Upadhyay ‘19] 

• Sliding window DP model [Arora-Upadhyay-Upadhyay ‘21]

• Challenging in the continual release model

• Error can compound over the stream

• Time-aware projections [JSW24] takes an arbitrary stream 
and produces: 

• Stream satisfying degree bound ෩𝐷

• Identical to every prefix of stream with vertices is ෩𝐷-bounded
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Challenges of Sparsification in Continual Release

• Error can compound over the stream

• Consider simple sparsification procedure:

• Remove all edges adjacent to nodes with degree greater 
than ෩𝑫, public bound

• Results in graph with degree upper bounded by ෩𝐷

Edge-neighboring with ෩𝑫 = 𝟑

𝑆 𝑆′
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𝒗

𝒘

𝒃

𝒄

𝒗

𝒄

𝒂

𝒗
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Edge-neighboring with ෩𝑫 = 𝟑

𝑆 𝑆′

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒃

𝒄

𝒗

𝒄

𝒖

𝒗

𝒂

𝒃
⊥

𝒗

𝒘

𝒃

𝒄

𝒗

𝒄

𝒂

𝒗
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Challenges of Sparsification in Continual Release

Edge-neighboring with ෩𝑫 = 𝟑

𝑆 𝑆′

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒃

𝒄

𝒗

𝒄

𝒖

𝒗

𝒂

𝒃
⊥

𝒗

𝒘

𝒃

𝒄

𝒗

𝒄

𝒂

𝒗

Sparsified 
Graphs

𝒖

𝒗

𝒂

𝒘

𝒃 𝒄

𝒖

𝒗

𝒂

𝒘

𝒃 𝒄

𝐺 𝐺′Differs by ෩𝑫 edges!
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Sparsification Need to Preserve Edge Edit 
Distance

• Edge edit distance: number of update events that differ 
between two streams

• Sparsified streams should differ by bounded number of 
events:

• Deterministic algorithms

• Randomized sparsification algorithms 

• Exists coupling of randomness where output streams 
differ by bounded number of events
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Sublinear Space Densest Subgraph

• Our results:

• Vertex Subset

• ෨𝑂
𝑛

𝜀
 space

• UB: 1 + 𝜂,
poly log 𝑛

𝜀
-approximation
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Sublinear Space Densest Subgraph

• Uses uniform sampling idea of [McGregor-Tench-Vorotnikova-
Vu ‘15] and [Esfandiari-Hajiaghayi-Woodruff ‘16]

• Uniformly sample edges from stream 

• Obtain 𝑂(𝑛 log 𝑛) sized sample via appropriate 𝑝

• Find densest subgraph in sample, return vertex set as 
densest subgraph in original, scale by 1/𝑝 for size
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Sublinear Space Densest Subgraph

• Several challenges in continual release:

• [MTVV15] and [EHW16] are release solution at end of the stream

• Each edge used ``once’’ in solution output

• We need to release answer at every step

• Adaptively choose sampling probability 

• Ensure adaptive sampling probability is edge edit distance 
preserving
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Sublinear Space Densest Subgraph

• Progressively decrease edge sampling probability

• When number edges exceeds 1 + 𝜂 ⋅ 𝑚𝑝𝑟𝑒𝑣 

• Rescale sampling probability to Θ
𝑛 log 𝑛

𝑚𝑛𝑜𝑤
 where 𝑚𝑛𝑜𝑤 =

1 + 𝜂 ⋅ 𝑚𝑝𝑟𝑒𝑣

• Cannot do this naively: naive scaling could result in different 
probabilities for different edges; not distance preserving

Compounding Errors in 
Continual Release
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Sublinear Space Densest Subgraph

• Use sparse vector technique to determine when to reduce 
sampling probability

• Sparse vector technique: DP technique for determining 
when a query exceeds a threshold

• Loses privacy proportional to number of times threshold 
exceeded

• Hence, coupling exists between sampling probabilities

• Sampled edges preserve edge edit distance
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Sublinear Space Densest Subgraph

• Finally, additional challenge:

• Additive noise of 𝑂
log 𝑛

𝜀

• Need to ensure noise does not increase multiplicative 
approximation

• Scaling up the additive error by 
1

𝑝
-factor

• Additive error becomes 𝑶
log 𝒏

𝒑⋅𝜺

• Solution: Ensure returned densest subgraph has large 
enough size
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

𝑝

Sample each edge update with 

probability 𝑝 = Θ
𝑛 log 𝑛

𝑚′  

𝒖

𝒗

𝒗

𝒘
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Use SVT to determine when threshold of 
number of edges seen exceeds 1 + 𝜂 𝑚′ 

𝒖

𝒗

𝒗

𝒘

𝑝
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

If SVT is satisfied decrease probability by 
1 + 𝜂  factor

𝒖

𝒗

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂⊥

𝒘

𝒄

𝒗

𝒄

𝒘

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Resample existing sampled edges with 

probability 
1

1+𝜂

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Use 𝜀-DP algorithm for each sample to determine 
released solution at appropriate timestamps

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Use SVT to determine if densest subgraph 
increased in value by 𝟏 + 𝜼 -factor

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Only release when densest subgraph increased in 
value by 𝟏 + 𝜼 -factor

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Only release subset of vertices when densest 
subgraph increased in value by 𝟏 + 𝜼 -factor

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝒘

𝒗

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Scale value of densest subgraph by inverse 
of current sampling probability

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝒘

𝒗

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Use any 𝜀-DP (static) Densest Subgraph algorithm 
for determining subset of vertices to release 

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝜺-DP Densest 
Subgraph Algorithm

𝒘

𝒗

𝒄



Simons Institute Sublinear Graph Simplification 2024

Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Set first non-trivial initial release for density to be 

Ω
log2 𝑛

𝜀
 to account for DP alg additive error

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝜺-DP Densest 
Subgraph Algorithm

𝒘

𝒗

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

𝜀-DP Guarantee from DP of SVT, Edge Edit 
Distance is preserved, and Composition

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝜺-DP Densest 
Subgraph Algorithm

𝒘

𝒗

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Approximation guarantee from very intricate Chernoff Bound 
argument accounting for errors from SVT and DP algorithm

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝜺-DP Densest 
Subgraph Algorithm

𝒘

𝒗

𝒄
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Sublinear Space Densest Subgraph

Putting it Together 

𝑆

𝒖

𝒗

𝒂

𝒃

⊥

𝒗

𝒘

⊥

𝒘

𝒄

𝒗

𝒄

Approximation guarantee from very intricate Chernoff Bound 
argument accounting for errors from SVT and DP algorithm

𝒗

𝒘

𝒗

𝒄

𝑝

1 + 𝜂

𝒘

𝒄

𝜺-DP Densest 
Subgraph Algorithm

𝒘

𝒗

𝒄

One Takeaway: adaptive uniform 
sampling with SVT is a sublinear 
simplification in DP that is edge 

distance preserving
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Node-DP Maximum Matching

• Arboricity sparsification: sparsification using upper bound 
based on the arboricity 𝛼

• Arboricity: minimum number of forests to decompose a 
graph

• Measure of local sparsity

Arboricity: 2
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Node-DP Maximum Matching

• Arboricity sparsification: sparsification using upper bound 
based on the arboricity 𝛼

• Solomon ‘16 obtained 𝑂 𝑛𝛼  sparsifier for maximum 
matching:

• Mark Λ = 𝑂
𝛼

𝜂
 arbitrary edges adjacent to every vertex

• Keep edges marked by both endpoints

• Matching in sparsified graph is a 1 + 𝜂 -approximation of 
the maximum matching in the original graph
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Node-DP Maximum Matching

• In the streaming model, mark the first ෤𝛼 edges incident to 
every vertex where ෥𝜶 is public bound on max arboricity

• Use SVT to determine when to release a new matching size

Node-neighboring streams and given ෥𝜶 = 𝟐

𝑆 𝑆′

𝒂

𝒃

⊥ ⊥

𝒃

𝒄

𝒖

𝒗

𝒂

𝒃
⊥

𝒗

𝒘

𝒃

𝒄

𝒗

𝒄

𝒂

𝒗

⊥⊥⊥
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Node-DP Maximum Matching

Node-neighboring streams and given ෥𝜶 = 𝟐

𝑆 𝑆′

𝒂

𝒃

⊥ ⊥

𝒃

𝒄

𝒖

𝒗

𝒂

𝒃
⊥

𝒗

𝒘

𝒃

𝒄

𝒗

𝒄

𝒂

𝒗

⊥⊥⊥

Sparsify

𝒂

𝒃

𝒄

𝐺

𝒂

𝒃

𝒄

𝐺′
𝒗

𝒖

𝒘Edge edit 
distance is ෥𝜶
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Node-DP Maximum Matching

• In the streaming model, mark the first ෤𝛼 edges incident to every 
vertex where ෥𝜶 is public bound on max arboricity

• Use SVT with sensitivity 𝑶 ෥𝜶  to determine when to release a 
new matching size

• Sensitivity of Λ in SVT translates to 
Λ poly log 𝑛

𝜀
 additive error

• Our result: 𝑂 𝑛 ෤𝛼  space with 1 + 𝜂,
෥𝛼 poly log 𝑛

𝜀
-approximation
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Node-DP Maximum Matching

• In the streaming model, mark the first ෤𝛼 edges incident to every 
vertex where ෥𝜶 is public bound on max arboricity

• Use SVT with sensitivity 𝑶 ෥𝜶  to determine when to release a 
new matching size

• Sensitivity of Λ in SVT translates to 
Λ poly log 𝑛

𝜀
 additive error

• Our result: 𝑂 𝑛 ෤𝛼  space with 1 + 𝜂,
෥𝛼 poly log 𝑛

𝜀
-approximation

One Takeaway: arboricity 
sparsification for node-DP applies 

to vertex cover and DP in the static 
setting



Simons Institute Sublinear Graph Simplification 2024

Open Questions

• Closing the gap for fully dynamic streams



Simons Institute Sublinear Graph Simplification 2024

Open Questions

• Closing the gap for fully dynamic streams

• Space lower bounds in addition to error lower bounds



Simons Institute Sublinear Graph Simplification 2024

Open Questions

• Closing the gap for fully dynamic streams

• Space lower bounds in addition to error lower bounds

• Many of our space guarantees include a factor of 

𝑂
1

𝜀



Simons Institute Sublinear Graph Simplification 2024

Open Questions

• Closing the gap for fully dynamic streams
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𝑂
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• This factor is not present in non-private streaming 
algorithms
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Open Questions

• Closing the gap for fully dynamic streams

• Space lower bounds in addition to error lower bounds

• Many of our space guarantees include a factor of 

𝑂
1

𝜀

• This factor is not present in non-private streaming 
algorithms

• Is this factor necessary?
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