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ABSTRACT
The red-blue pebble gamewas formulated in the 1980s [14] to model

the I/O complexity of algorithms on a two-level memory hierarchy.

Given a directed acyclic graph representing computations (vertices)

and their dependencies (edges), the red-blue pebble game allows

sequentially adding, removing, and recoloring red or blue pebbles

according to a few rules, where red pebbles represent data in cache

(fast memory) and blue pebbles represent data on disk (slow, exter-

nal memory). Specifically, a vertex can be newly pebbled red if and

only if all of its predecessors currently have a red pebble; pebbles

can always be removed; and pebbles can be recolored between red

and blue (corresponding to reading or writing data between disk

and cache, also called I/Os or memory transfers). Given an upper

bound on the number of red pebbles at any time (the cache size),

the goal is to compute a game execution with the fewest pebble re-

colorings (memory transfers) that finish with pebbles on a specified

subset of nodes (outputs get computed).

In this paper, we investigate the complexity of computing this

trade-off between red-pebble limit (cache size) and number of recol-

orings (memory transfers) in general DAGs. First we prove this prob-

lem PSPACE-complete through an extension of the proof PSPACE-

hardness of black pebbling complexity [13]. Second, we consider

a natural restriction on the red-blue pebble game to forbid peb-

ble deletions, or equivalently, forbid discarding data from cache

without first writing it to disk. This assumption both simplifies the

model and immediately places the trade-off computation problem

within NP. Unfortunately, we show that even this restricted ver-

sion is NP-complete. Finally, we show that the trade-off problem

parameterized by the number of transitions is W[1]-hard, meaning

that there is likely no algorithm running in a fixed polynomial for

constant number of transitions.

KEYWORDS
red-blue pebble game; external memory model; computational com-

plexity
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1 INTRODUCTION
Pebble games were originally introduced to study compiler op-

erations and programming languages. One example of such an

application is when a directed acyclic graph (DAG) represents the

computational dependencies between operations and the pebbles

represent register or memory allocation. Minimizing the resources

allocated to perform a computation is accomplished by minimizing

the number of pebbles placed on the graph [17], and the time of

computation is modeled by the number of pebbles moves the player

makes in a strategy that ultimately pebbles the desired output ver-

tices. In addition to the standard pebble game (also known as the

black pebble game in the literature) that models register or memory

allocation, there are several other pebble games that are useful for

studying computation. The red-blue pebble game is used to study

I/O complexity [14], the reversible pebble game is used to model

reversible computation [2], and the black-white pebble game is used
to model non-deterministic straight-line programs [5].

In this paper, we study the red-blue pebble game used to model

the cost of programs in a two-level memory hierarchy. The two-

level memory hierarchy model of [14] and the blocked version, the

I/O model or external memory model [1], were introduced in the

1980s [1, 14] to capture the computational bottleneck of transferring

data between a large but slow disk and a small but fast cache. (See

[7] for more about the history.) The red-blue pebble game models

the number of such data transitions that are necessary between

cache and disk, as well as the limit of the cache size. The rules of

the game are as follows:

Red-Blue Pebble Game [14]. Given a DAG G = (V ,E), the
game works as follows:

(1) At the start, every source node has a blue pebble, and

no other nodes have pebbles.

(2) The player can place a red pebble on a node if and only

if all of its predecessors are currently pebbled with red

pebbles.

(3) The player can recolor a blue pebble to red, or a red

pebble to blue.

(4) The player can delete a pebble from a node at any time.

Goal: Pebble all sink nodes with blue pebbles.
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Red pebbles represent data in cache and blue pebbles represent

data in disk. We suppose (as in real systems) that there is a limited

amount of cache and an unlimited amount of disk. In terms of the

red-blue pebble game, this means that the number of red pebbles

is limited by some upper bound r . Subject to this constraint, the

goal is to pebble all target nodes while minimizing the number k
of pebble recolorings between red and blue, i.e., minimizing the

number k of memory transfers between cache and disk. Recoloring

a pebble from red to blue corresponds to writing data out from

cache to disk, while recoloring from blue to red corresponds to

reading data in from disk to cache.

Much previous research has focused on proving lower and upper

bounds on the pebbling cost (i.e., the number of pebbles and/or

transitions used) of pebbling a given family of DAGs under the rules

of the red-blue pebble game. Such upper and lower bounds are com-

puted with respect to the number of transitions given a number of

red pebbles, r , that are provided to pebble the graph. Such previous

results include upper and lower bounds of O (n logn/ log r ) and
Ω(n logn/ log r ), respectively, on the minimum number of transi-

tions needed to pebble an FFT graph. Upper and lower bounds on

number of transitions for other graph classes such as r -pyramids,

diamond graphs, butterfly graphs, and matrix multiplication graphs

can be found in [11, 14, 16]. More recently, the model of one-shot

red-blue pebble games was introduced in [3]. This pebble game

is used to model I/O-complexity without recomputating any calcu-
lations in cache. They also show how to extend this model to the

multi-level memory hierarchy case.

Despite somewhat extensive research on the upper and lower

bounds of optimally pebbling a DAG in pebble games, the complex-

ity of finding a minimum solution has fewer results. In fact, it is not

yet known whether it is hard to find the minimum number of peb-

bles within a constant or logarithmic multiplicative approximation

factor [4, 8]. It turns out that finding a strategy to optimally pebble a

graph in the standard pebble game is computationally difficult even

when each vertex is allowed to be pebbled only once. Specifically,

finding the minimum number of black pebbles needed to pebble

a DAG in the standard pebble game to within an additive n1/3−ε

term is PSPACE-complete [8] and finding the minimum number

of black pebbles needed in the one-shot case is NP-complete [17].

While much has been done in showing upper and lower bounds in

pebbling price in terms of number of red pebbles and number of

transitions of pebbling certain types of DAGs using the red-blue

pebble game, the computational complexity of finding the exact

number of minimum red pebbles used and the minimum number

of transitions has not been studied in the past to the best of the

authors’ knowledge.

The purpose of this paper is twofold. We seek to answer the ques-

tion of computational complexity of finding the optimal number

of red pebbles and minimum number of transitions used. Secondly,

we seek to motivate the study of finding lower bounds and optimal

pebbling strategies for certain graph classes by showing that such

hardness results even hold for the very restricted class of layered

graphs. In this paper, we discuss the following new results:

(1) In Section 2, we show that the red-blue pebble game is

PSPACE-complete, via a simple extension of the result of [13].

(2) In Section 3, we introduce a new red-blue pebble game and

prove it NP-complete. Specifically, we consider the natural

restriction to when all data must be kept somewhere, either

in cache or on disk, or equivalently, the player cannot delete

pebbles, only recolor them.

(3) In Section 4, we analyze the complexity of the red-blue pebble

game when parameterized by the allowed number t of tran-
sitions. We prove that this problem is W[1]-hard, so it does

not have a fixed-parameter algorithm (with running time

f (t )nO (1)
) unless FPT = W [1]. (Note that some PSPACE-

complete problems are fixed-parameter tractable, so this

result is not implied by our other results.)

Due to space constraints, all proofs which are not given in the

main body of the paper can be found in the full version of our

paper.

2 RED-BLUE PEBBLE GAME
We begin this section with a short proof that the red-blue pebble

game with deletion is PSPACE-complete. We do not expand too

much into the proof since it relies heavily on the proof given in [13]

(and is almost identical to the proof provided there). Therefore we

include this result first before our main result on red-blue pebbling

without deletions whose proof we expand upon in more detail in

the next section.

First, we define the red-blue start-in-disk game to be the version

of the red-blue pebble game as defined in Section 1 (i.e. all source

nodes contain blue pebbles at the beginning of the computation,

i.e. at t = 0, and all inputs if deleted from cache must be obtained

from disk and all outputs are written back to disk) and the red-blue
start-in-cache game to be the version of the red-blue pebble game

where we remove the condition that all source nodes contain blue

pebbles at the beginning of the computation (i.e. essentially, all

inputs start in cache) and red pebbles can be placed at any time on

the source nodes–without the need of blue pebbles being on the

source nodes first (i.e. inputs always stay in cache). Furthermore,

for the red-blue start-in-cache game, we assume that all targets must

be computed at least once in cache without the need to write the

results back into disk (i.e. this is also known as a visiting pebbling

in cache [15] in that the red pebbles do not need to be turned into

blue pebbles even if they are deleted in cache).

Before we dive into the proofs, we first show that any red-blue

pebbling of a DAG G using the rules of the red-blue start-in-cache

game that has minimum red pebble space usage r and minimum

number of transitions k can be converted to a DAG G ′ with mini-

mum pebbling space usage r+1 and number of transitions k+1+ |T |
(where T is the target set or output nodes) using the rules of the

red-blue start-in-disk game.

Theorem 1 (Red-Blue Disk to Cache). Given a DAG, G =
(V ,E) with target setT and bounded in-degree 2 that uses a minimum
of r red pebbles and k transitions to pebble using the rules of the red-
blue start-in-cache game, we can convert it into a DAG,G ′ = (V ′,E ′),
that uses a minimum of r + 1 red pebbles and k + 1 + |T | transitions
to pebble using the rules of the red-blue start-in-disk game.

Proof. First, create a node u and let V ′ = V ∪ {u}. Then, create
a set of directed edges U where we add an edge (u,v ) toU for all

Session 5 SPAA’18, July 16-18, 2018, Vienna, Austria

196



v ∈ V . Let E ′ = E ∪U . Graph G ′ now potentially has vertices with

in-degree up to 3. In the final step of creating G ′, we replace all
vertices with in-degree 3 with pyramids of height 3. Note that a

pyramid of height 3 functions in the same manner as a node with

in-degree 3 by normality of pebbling strategies proven in [13, 15].

Let P be the optimal strategy used to pebble G using the rules

of the red-blue start-in-cache game that results in a minimum of r
red pebbles and k transitions.

Now, we prove that a minimum of r + 1 pebbles and k + 1 + |T |
transitions are necessary to pebble G ′ using the rules of the red-

blue start-in-disk game. By construction, G ′ has one source (leaf)
node where one blue pebble is placed on it at the beginning of the

pebbling (at t = 0). Before any other pebbles can be placed on G ′,
we must use exactly 1 transition to turn the blue pebble on the

source to a red pebble. The red pebble remains on the source, and

we use strategy P to pebble the remaining nodes of G ′.
We now consider the minimum number of transitions that can

be used with at most r + 1 red pebbles and before all outputs are

written back to disk. We show that in order to use a minimum

of k + 1 transitions, the red pebble must remain on the source

during the entire computation of G ′. Suppose for contradiction,

the red pebble is turned into a blue pebble (recall that all leaves

must contain a pebble at all times–otherwise they can never be

pebbled again using the rules of the red-blue start-in-disk game),

then, in any future pebbling of any other nodes in G ′, the blue

pebble on the source must be turned into a red pebble, resulting in 2

additional transitions (a total of k+3 transitions) which exceeds the

minimum allowed k + 1 transitions (since P uses a minimum of k
transitions and turning the pebble on u to red requires 1 transition).

Thus, given that the red pebble remains on the source during the

entire pebbling of G ′ (i.e. the red pebble on the source u is present

at time t = argmaxPt ∈P {|Pt |}) where the maximum number of

red pebbles are on the graph using strategy P) the number of red

pebbles necessary to pebbleG is then increased by 1, so a minimum

of r+1 red pebbles are necessary to pebbleG ′ given that a minimum

of k + 1 transitions are used before all outputs are written back into

disk.

Finally, given the set T of targets, one transition must be spent

to turn a red pebble into a blue pebble on each vT ∈ T . Thus, at
least |T | transitions must be spent in this case, resulting in a total

of at least k + 1 + |T | transitions. □

In the remaining sections of the paper, we prove all results with

respect to the rules of the red-blue start-in-cache game, even if we

do not explicitly state that we do so. Note that using Theorem 1, we

can transform any graph G we use in our hardness reductions into

a graph G ′ that can be used to show the corresponding hardness

results for the red-blue start-in-disk game.

The red-blue start-in-cache pebble game as defined above is

PSPACE-hard as a simple extension of the proof given in [13]. The

formal definition of the problem is given below.

Definition 1 (Red-Blue Pebble Game). Given a DAG, G (V ,E)
withn = |V | vertices andm = |E | edges, find a pebbling ofG following
the red-blue start-in-cache pebbling rules as defined above such that
at most r red pebbles are present onG at any time and the number of
red-blue transitions, k , is minimized.

The proof structure and the gadgets to show that the red-blue

pebble game is PSPACE-hard can be constructed in the same way

as the gadgets in the proof of the PSPACE-hardness of the standard

pebble game as defined in [13]. The reduction would specify the

number of red pebbles necessary to be one greater than the number

of pebbles necessary in the proof presented by Gilbert et al. [13]

and the number of transitions to be 0. We, thus, only need to show

that the number of red pebbles necessary to pebble the gadgets in

the construction is indeed one greater than the number necessary

to pebble the construction provided in [13]. We show that the

construction can be pebbled with one greater pebble in the red-

blue pebble game using 0 transitions if and only if the construction

in [13] can be pebbled using the rules of the standard pebble game;

hence the red-blue pebble game is PSPACE-complete.

Lemma 1. The proof construction provided in [13] can be pebbled
using s pebbles in the standard pebble game if and only if it can
be pebbled using s + 1 red pebbles and 0 transitions in the red-blue
start-in-cache pebble game.

Theorem 2. Determining the minimum pebbling cost and number
of transitions is PSPACE-complete (even given constant number of
transitions) to compute in the red-blue pebble game.

By noticing that we can transform the above hardness construc-

tion to a layered graph by topologically sorting the vertices used

in the construction and replacing each edge that go between non-

consecutive layers by a path of length equal to the number of layers

that the edge go between, we result in a multiplicative factor in-

crease of at most O (n2) in the number of nodes in the graph since

the number of layers is at most O (n). It is trivial to see that all

pebbling constraints are still preserved by replacing edges with

paths.

Corollary 1. Determining the minimum pebbling cost and num-
ber of transitions is PSPACE-complete to compute in the red-blue
pebble game even for layered graphs.

3 RED-BLUE PEBBLE GAMEWITH NO
DELETION

In this section, we introduce our model of the red-blue pebble game

with no deletion and prove that it is NP-complete to determine the

minimum number of red pebbles and transitions needed to pebble a

given DAG under the rules of this game. The red-blue pebble game

with no deletion is defined as follows:

(1) A red pebble can be placed on any vertex that has a blue

pebble. (Transition move.)

(2) A blue pebble can be placed on any vertex that has a red

pebble. (Transition move.)

(3) A red pebble can be placed on a vertex where all predeces-

sors of the vertex contain red pebbles. (The red pebble can

override preexisting pebble placements without using any

additional transitions, i.e. the vertex already contains a blue

pebble.)

(4) No pebbles can be deleted from a vertex.

As usual, red pebbles represent fast memory and blue pebbles

represent slow memory; we assume that we have infinitely large

slow memory, but only a bounded fast memory. The goal of this
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game is to pebble all vertices in G while minimizing the number

of transition moves. The motivation of this game is to determine

the added computational complexity of allowing deletions to occur

in the RAM. Suppose that one would like to limit the number of

deletions or to minimize the number of transitions as well as dele-

tions. Another motivation is to always maintain computed data in

memory. For example, for certain persistent data structures, one

always want to keep some form of computed values in memory

at all times. This paper analyzes the computational complexity of

such a model.

The formal statement of the game is almost identical to the

definition of the red-blue pebble game and is the following:

Definition 2 (Red-Blue Pebble Game with No Deletions).

Given a DAG, G (V ,E) with n = |V | vertices andm = |E | edges, find
a pebbling ofG following the red-blue with no deletion pebbling rules
(given above) such that at most r red pebbles are present on G at any
time and at most k red-blue transitions are used.

In the next few sections, we show that the Red-Blue Pebble Game

is NP-complete.

3.1 Proof Overview
We provide a reduction broadly similar in concept to [13] except

we reduce from Positive 1-in-3 SAT to show that our problem is

NP-complete. The definition of Positive 1-in-3 SAT is given below:

Definition 3 (Positive 1-in-3 SAT [12]). Given a setU of vari-
ables and a collection C of clauses overU such that each clause c ∈ C
has size |c | = 3 and all literals in c are positive, does there exist a
truth assignment for U such that each clause has exactly one true
literal?

The proof of NP-completeness of the red-blue pebble game with

no deletions proceeds as follows. We create a set of variable gadgets

that are pebbled with a set of red pebbles that determine whether

the variable is set to true or false. The variable gadgets are then

connected to clause and anti-clause gadgets that enforce the 1-in-3

condition on the literal truth settings. The variable gadgets are also

connected to a pebble sink path that ensures that all variables are

pebbled and set to a truth configuration before the clause gadgets

are pebbled. Finally, the clause gadgets and variable gadgets are

connected to a pebble hold path that ensures that all red pebbles

are removed from these gadgets and are used to fill up the pebble

hold path. Specifics about the gadgets and details of the proof

construction will be given in the next few sections.

The pebbling of the gadgets occur in two phases: Phase 1 and

Phase 2. During Phase 1 of the pebbling, all variables gadgets are

set to a truth value. During Phase 2 of the pebbling, the portions

of the variable gadgets that were not pebbled in Phase 1, leading

to the pebbling of the target node. The gadgets are connected in

the following way: all variable gadgets are connected to a pebble

sink path (see дi , д
′
i , and д

′′
i in Fig. 2) where the end of the path is

connected to the first clause gadget; all clause gadgets are connected

via a path and the last clause is connected to another pebble sink

path (see si , s
′
i , and s

′′
i in Fig. 2) which is connected to the target

node. Each variable gadget is also connected to the clause it appears

in as well as the corresponding anti-clause. We define the pebbling

of the clauses and anti-clauses to be the clause verification phase.

3.2 Gadgets
In this section, we introduce some gadget components that will be

used in the proof that the red-blue pebble game with no deletions

is NP-complete.

We define a variable gadget for every xi ∈ U . The purpose of

the variable gadget is to force a selection of variable assignments.

In order to construct the variable gadget, we use a pyramid gadget

introduced by previous work [13] that is used to “trap" a certain

minimum number of pebbles that must be used to pebble the gadget.

Henceforth, for every gadget, д, we introduce, we will specify the

minimum number of red pebbles, rд , that can remain on the gadget

after it has been pebbled once and tд , the minimum number of

red-blue transitions that must be performed on the gadget after it

is pebbled each time.

The pyramid graph has been proven to use h pebbles where h
is the height (where a single node has height 1) of the pyramid

graph using standard pebbling (with sliding pebbles) [6]. Let Πh
be a pyramid graph with height h. It was proven in [15] that the

standard pebbling price with no sliding is h + 1 for a pyramid with

height h. Here we prove that using the red-blue pebbling strategy
with no deletions, the minimum pebbling price of a pyramid with

height h is rΠh = h + 1 and tΠh =
h (h+1)

2
. Let PebRBD (Πh ) be the

minimum pebbling price of a pyramid graph using the red-blue

strategy with no deletions. The ending state of the pyramid has

no red pebbles. We use this property of the pyramid graph in our

proof in Section 3.3.

Lemma 2. Given a pyramid graph of height h, the PebRBD (Πh )

is rΠh = h + 1 and tΠh =
h (h+1)

2
such that no red pebbles remain on

the pyramid at the end of the pebbling.

Fig. 1 shows the construction of the pyramid gadget and its asso-

ciated symbol that will be used to denote it in all subsequent proofs

in Section 3.3. One can see that the number of pebbles required to

fill the pyramid gadget is also the number of leaves on the bottom

layer plus one and the number of transitions is

∑l
i=1 i where l is

the number of leaves in the gadget.

Figure 1: Example of a pyramid gadget with rΠ4
= 5 and tΠ4

=

10.

Using the pyramid gadget we can construct the variable gadget

as in Fig. 2.

We define ai for all xi shortly. Each xi variable gadget requires
ai pebbles since in order to choose an assignment for xi , ai pebbles
must be used to pebble the pyramid gadget attached to the variable.

Since each qi is part of two variable gadgets, we define qi−1 to be
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s ′isi s ′′i

ai − 2

qi

qi−1

x∗i xi

xi

ai

x∗i

ai − 1

дi

д′i

д′′i

Figure 2: Example of a variable gadget, xi , with pyramid
costs ai , pebble sink path connections дi , д′i , and д

′′
i . The cor-

responding pebble sinks that correspond with this gadget
are si , s ′i , and s ′′i .

part of variable gadget xi and qi to be part of the next variable

gadget. We show that the gadget must be pebbled in the following

way.

During Phase 1 of pebbling the variable gadget xi , each pyramid

gadget is pebbled. Then, the corresponding nodes in the pebble sink

path can be pebbled in the order дi , д
′
i , and, then, д

′′
i . All nodes

along the pebble sink path must be pebbled in order to pebble

the clauses and proceed to the clause verification phase. First, ai
pebbles must be used to pebble both xi and x∗i with red pebbles,

converting all other pebbled vertices in each pyramid to contain

blue pebbles. This then leaves ai − 2 pebbles to pebble the other

pyramid gadget, leaving one pebble at the apex of the gadget and

converting all other pebbled vertices in the pyramid to contain blue

pebbles. The apex of these pyramids are connected to pyramid sink
paths which are paths of length n occuring after each set of clause

and two anti-clauses triples. Then, either the pair of nodes xi and

x∗i is pebbled with red pebbles and xi and x
∗
i are converted to blue

pebbles or xi and x∗i contain red pebbles and xi and x∗i are not

pebbled. We show that at most 3 red pebbles can remain on each

variable gadget.

In Phase 2, qi−1 will be pebbled once all clauses are pebbled.

Therefore, all other nodes of the variable gadget must be pebbled

using the pebbles that remain on each pyramid gadget. If the red

pebbles from Phase 1 are placed on x∗i and xi , then xi and x
∗
i need

to be pebbled in Phase 2. Furthermore, si , s
′
i and s ′′i need to be

pebbled with red pebbles in Phase 2 by moving the red pebbles

from each corresponding pyramid. The red pebbles will remain on

si , s
′
i , and s

′′
i since no transitions are allowed to be spent on these

nodes.

A clause gadget is created for each c j ∈ C . The clause gadget is
connected to every positive xi literal that is present in its respective

clause c j . An example clause gadget with rci = 6 and tci = 29 (here

rci does not include the red pebble on the one true literal and the

red pebble on pi−1 and tci does not include the transition used to

turn the pebble on pi to blue) is shown below in Fig. 3. The order of

the clauses is determined arbitrarily and all clauses are duplicated

and occur in the same topological order in the two sets (the original

clauses and the duplicate clauses).

pi

6

pi−1 xi x∗i x j x∗j xk x∗k

Figure 3: Example of a clause gadget with rci = 2 and tci = 29

for clause ci = (xi ∨ x j ∨ xk ). The number of red pebbles
that is needed to fill this gadget is 6 (excluding the two red
pebbles that are present on the true literal and the red pebble
on pi−1).

The clause gadget is accompanied by two anti-clause gadgets, ci
and ci

′
, that are used to enforce the exact 1-in-3SAT condition. The

anti-clause gadgets should also be pebbled with rci = 6 and tci = 64.

ci contains all xi literals and ci
′
contains all x∗i literals. First, the

pyramids must be pebbled along the path leading up to pi . Then,
the one negative literal that is not pebbled must be pebbled with

a red pebble by using 2 transitions. Finally, the remaining nodes

of the gadget are pebbled once using 62 transitions resulting in pi
being pebbled with a red pebble. An anti-clause gadget is shown in

Fig. 5.

Each variable gadget is connected to a pebble sink path as shown

in Fig. 4. The purpose of the pebble sink path is to ensure that all

pyramids are pebbled by the end of Phase 1 of variable pebbling and

that each variable only contains at most 3 red pebbles. The pebble

sink path can be pebbled using an − 3n red pebbles and the number

of transitions needed to pebble this path is 3n +
(an−3n+1) (an−3n)

2
.

The number of transitions indicate that each node of the pebble

sink path can only be pebbled once. Once the end of the pebble

sink path is pebbled, the clause gadgets can be pebbled in the clause
verification phase.

We now prove our claims above more formally. We begin by

proving that the end of Phase 1, at most 3 red pebbles can remain

on each of the variable gadgets.

Lemma 3. At most 3n red pebbles can remain on the variable gad-
gets at the end of Phase 1 and the beginning of the clause verification
phase where n is the number of variable gadgets.

We prove a matching lower bound for the number of red pebbles

that should remain on the variable gadgets after Phase 1.

Lemma 4. At least 3 red pebbles must remain on each variable
gadget at the end of Phase 1 in order to be able to pebble the constructed
graph using a minimum number of red pebbles and transitions.

Using Lemma 3, we can now prove the number of red pebbles

and transitions necessary to pebble the variable gadgets.

Lemma 5. The pebbling price of the variable gadget (not including
si , s ′i , s

′′
i , дi , д

′
i , д
′′
i or qi ) for variable xi is rxi = ai and txi =
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∑
3

j=1
(ai−j+1) (ai−j )

2
+ 4 assuming all red pebbles are removed from

the gadget at the end of the pebbling. The transitions cost includes the
cost of pebbling and removing red pebbles from all nodes as shown in
Fig. 2 except si , s ′i , s

′′
i , дi , д

′
i , д
′′
i and qi . Assuming all variable gadgets

are set to a truth value during Phase 1 and Phase 2 begins with the
pebbling of q0 and ends with red pebbles on si , s ′i , s

′′
i , qi , during Phase

1, the pebbling cost is rxi = ai and
∑
3

j=1
(ai−j+1) (ai−j )

2
− 3 ≤ t ≤∑

3

j=1
(ai−j+1) (ai−j )

2
− 1. Furthermore, during Phase 2 of the pebbling,

the pebbling cost is rxi = 4 and 5 ≤ txi ≤ 7 and red pebbles remain
only on si , s ′i , s

′′
i , and qi .

We prove the following lemma to help us prove that all variable

gadgets must be set in Phase 1.

Lemma 6. If n′ variables do not have at least one of the two pairs,
x∗i and xi or xi and x∗i , pebbled at the end of the clause verification

phase, then a total of at least
(∑n

i=1
∑
3

j=1
(ai−j+1) (ai−j )

2
+ 4

)
+ n′

transitions are needed to pebble all variable gadgets in Phase 1 and
Phase 2.

Figure 4: Example pebble sink path. Each node is connected
to the root of each pyramid in each variable gadget.

Lemma 7. Given rci = 6 and tci = 29, the clause gadget ci (shown
in Fig. 3) cannot be pebbled if all three variable gadgets incident on
ci are in the false configuration and no red pebbles remain on ci after
it is pebbled (i.e. when pi is pebbled).

Lemma 8. Given rci = 6 and tci = 61, the anti-clause gadget
cannot be pebbled if less than 2 negative literals are true.

Lemma 9. Each clause gadget must contain exactly one true literal
pebbled with red pebbles and each anti-clause gadget must contain
exactly two true literals pebbled with red pebbles at the end of Phase
1 before the clause verification phase.

Given these gadgets, we are ready to proceed with the reduction

from Positive 1-in-3 SAT.

3.3 Reduction from Positive 1-in-3 SAT
Given a Positive 1-in-3 SAT expression, ϕ, we create a variable

gadget for each of the n variables and a clause and two anti-clause

gadgets (one for xi and one for x
∗
i ) for each of them clauses. To see

pi

6

4

pi−1 xi x j xk

· · ·

...

Figure 5: Example of an anti-clause gadget with r = 6 and
t = 64. The number of red pebbles that is needed to fill this
gadget is 6 (excluding the two red pebbles that are present
on the true negative literals).

an example full construction, please refer to the full version of our

paper. .

Each variable gadget is connected to the next by the set of vertices

Q consisting of nodesqi ∈ Q . Each variable gadget is also connected

to the pebble sink path consisting of vertices дi ∈ G and to the

pebble hold nodes si , s
′
i , and s

′′
i . For each clause gadget, we connect

it with its corresponding anti-clause gadgets via the nodes in the set

pi ∈ P . The final anti-clause gadget in the chain of clause and anti-

clause gadgets is connected to the bottom of the chain of variable

gadgets. Finally, all variable gadgets are connected to pebble hold

nodes, si , s
′
i , s
′′
i ∈ S that are also along a path and ensure that all

red pebbles end on these set of nodes. There are no transitions

allocated for these nodes; therefore, any red pebbles that are used

to pebble these nodes must remain.

We let an = 3n+6 and ai = ai−1+3. Therefore, we set r = 3n+6

and t = 93m + 3n + 22 +
∑n
i=1
∑
3

j=1
(ai−j+1) (ai−j )

2
for the entirety

of the construction.

We now provide an argument that red-blue pebbling with no

deletions is in NP.

Lemma 10. Given a DAG G (V ,E) where n = |V |, and parameters
r and t and a pebbling strategy, we can check whether the strategy
works in time O (n2).

Theorem 3. Generalized red-blue no-deletion pebble game on a
DAG with maximum in degree 7 is NP-complete by reduction from
Positive 1-in-3 SAT.

Corollary 2. Generalized red-blue no-deletion pebble game on a
DAG with maximum in degree 2 is NP-Complete by reduction from
Positive 1-in-3 SAT.

One can produce a reduction with indegree 2 graphs by replacing

all nodes with indegree greater than 2 with pyramids with height

equal to the indegree minus 1. Similar proofs can prove hardness

in this case.

4 RED-BLUE PEBBLE GAME
PARAMETERIZED BY TRANSITIONS

In this section, we prove that the red-blue pebble game with dele-

tion where the number of red-to-blue or blue-to-red transitions
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is parameterized by k is W[1]-hard by reduction from the W[1]-

complete problem, Weighted q-CNF Satisfiability. It was previously
shown by [9] that Weighted q-CNF Satisfiability is W[1]-complete

for any fixed q ≥ 2. In order to maximize the similarity to our

previous reductions, we will be reducing from Weighted 3-CNF

SAT via a parameterized reduction.

It has been noted that this result seems superfluous given the

NP-hardness result for 0 transitions given in Section 2. However,

we note that an NP-hardness result does not necessarily supersede

a parameterized complexity result since they are different com-

plexity domains. In fact, there exist NP-complete problems with

natural parameterizations that have fixed-parameter tractable algo-

rithms. Furthermore, the techniques presented in this section are

techniques that could be important for future proofs of hardness or

hard-to-pebble graph family constructions.

Definition 4 (Weighted q-CNF Satisfiability [9, 10]). Given
a CNF formula, ϕ, a set U of variables (n = |U |), and a set C of
clauses (m = |C |) where the number of literals per clause is at most
q, determine whether there is a satisfying assignment for ϕ of truth
values to the variables in U such that the number of variables that
are true is k .

Given a 3-CNF formula, we first create two clauses for each of the

variables: for allxi ∈ U we add the clauses (xi∨xi∨xi )∧(xi∨xi∨xi ).
Note that if a truth value is assigned to xi , then both clauses must

be true. The presence of these clauses is to ensure that each of the

variable gadgets in the reduction are assigned a valid truth value.

The reduction transforms an instance of Weighted 3-CNF SAT

with parameter k to an instance of red-blue pebble game with
deletion (note that this is a different model from the one presented

in Section 3) such that the reduced instance is allowed r = 7n−4k+1
pebbles and 2k red-blue transitions.

We first provide an overview of our proof techniques. Then, we

describe the gadgets used in our proof. Finally, we provide the proof

that the red-blue pebble game defined in Section 2 is W[1]-hard.

4.1 Proof Overview
Given a Weighted 3-CNF SAT expression, ϕ, we first duplicate all
the variables and clauses until n′ the number of new variables

including duplicates follows the rule
3n′
4
> k . From here onwards,

we refer toϕ to be the new 3-CNF expression (with the duplications)

and n to be the number of new variables.

As in the proof given in Section 3, we create a set of variable

gadgets that are connected to a set of clause gadgets that check

whether each clause is satisfied according to the truth settings of

the variables. The k true variables conditions is enforced by the

All-False and k-True-Variables gadgets which first force all variable

gadgets to be set to false, then picks exactly k variables to set to

true and uses exactly 2k transitions. The problem is parameterized

by the number of transitions, 2k , and the number of red pebbles

is limited by some number that is polynomial in the number of

variables in ϕ. All of the transitions will be used before the clause

gadgets are pebbled. Therefore, all pebblings of all gadgets after

the variable gadgets, the All-False gadget, and the k-True-Variables
gadget are pebbled using only red pebbles and no transitions.

We will now describe the gadgets that are used in the reduction.

4.2 Gadgets
4.2.1 Variable Gadget. The variable gadgets are used to repre-

sent the variables that are in U and are present in ϕ (i.e. we do not

create a variable gadget for variables that are not present in ϕ). We

again categorize the complete pebbling of the variable gadgets into

three phases: Phase 1, Phase 2, and Phase 3. During Phase 1, each

variable must be pebbled in the following way. The pyramid gadgets

within each variable gadget are first pebbled with red pebbles and

one red pebble remains on the apex of each pyramid gadget. See

Fig. 6.

After all variable gadgets have been pebbled once (i.e. both x ′i
and xi are pebbled), the x

′
i nodes must be pebbled with red pebbles.

In order to pebble the x ′i nodes, the remaining red pebbles will

be used as well as the red pebbles on x ′i . The corresponding red

pebble on x ′i is either turned to blue or removed. At most k of

these red pebbles may be turned to blue since we are given only 2k
transitions and each of the blue pebbles must be reverted back to

red at some point in the future (proof will be provided later). The

three vertices representing xi remain un-pebbled and a red pebble

remains on each xi . Each vertex of x ′i as well as xi are connected to
the All False gadget (described below). The All False gadget must

be pebbled after the variable gadgets since all other subsequent

pebbling depends on the set of 2k + 1 nodes that were pebbled

during the pebbling of the All False gadget.

Figure 6: Variable gadget.

Lemma 11. All variable gadgets must be in the false configuration
after Phase 1.

During Phase 3 of pebbling the variable gadgets, the other nodes

within the gadget are pebbled using the red pebbles that are left on

the gadget from Phase 2. This phase requires no transitions since

the extra red pebbles from the clause and pebble sink path gadgets

can be used to pebble the variable gadgets during this phase.

4.2.2 All False Gadget. The All False gadget is used to check

that all variables are initially set to false. See Fig. 7. It consists of

2k + 1 vertices with unbounded indegree with predecessors x ′i and
xi for all i . Furthermore, its predecessors also contain an − 4n − i
nodes for i = {0, . . . , 2k } to use up the other an−4n−i extra pebbles.
The 2k + 1 nodes from the All False gadget are then connected to

the k-True-Variables gadget and all the clause gadgets.
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Figure 7: The All False gadget consists of 2k + 1 nodes that
all have x ′i and xi as predecessors. Each of these 2k + 1 nodes
are connected to the k-True-Variables gadget and the clause
gadgets.

4.2.3 k-True-Variables Gadget. Phase 2 of the variable pebbling
phases consists of resetting a set of k variables to true. The k-
True-Variables gadget is present to constrain the number of true

variables to exactly k . The k-True-Variables gadget consists of a
single unbounded indegree vertex with xi as predecessors for all
i . After passing through the All False gadget, k variable gadgets

must be switched from the False position to the True position by

moving 3k pebbles from x ′i to xi and using k transitions to move

k red pebbles to x ′i . As we will show in the next few gadgets, k

transitions must be used to pebble x ′i nodes with red pebbles. See

Fig. 8 for an example.

Figure 8: k-True gadget connects to all xi for all i.

Lemma 12. At the end of Phase 2, exactly k variable gadgets are
set in the true configuration.

4.2.4 3-or-None Gadget. The 3-or-None gadgets are used to

ensure that every variable either has 3 pebbles on each xi or x
′
i or

none on them. This is to ensure that the player cannot cheat by

using less than 3 pebbles to set either x ′i or xi true. A 3-or-None

gadget is created for each variable. The 3-or-None gadget consists

of sets of 2 vertices one picked from xi and the other picked from x ′i .
All such pairings are connected to a path with vertices of indegree 5

(the other vertices are roots) so that only one pebble is allowed to go

through the path. See Fig. 9 for an example of a 3-or-None gadget.

This gadget can be pebbled using 5 pebbles. However, more pebbles

will not ensure that the gadget can be pebbled if it does not satisfy

the invariant as stated in Lemma 15. In other words, more pebbles

does not guarantee that the gadget can be pebbled without using

any transitions. Attached to each node of the 3-or-None gadget are

3n − 4k − 3 roots that have outgoing edges to the nodes in the path

in the gadget. The All-False termination node is also connected to

every node in the path of the 3-or-None gadget.

Figure 9: 3-or-None gadget. One is created for every variable.

Lemma 13. For every variable gadget that does not follow the
condition specified in Lemma 15 and contains less than 6 red pebbles,
at least two transitions are required to satisfy the gadget.

Lemma 14. Suppose some variable gadgets are set in the configu-
ration where xi and x ′i are pebbled with red pebbles, then the number
of transitions needed to pebble both the All-False gadget and the
3-or-None gadget is greater than 2k .

Lemma 15. In order to satisfy all 3-or-None gadgets using at most
2k transitions, the only possible configurations for all pebbles must
be placed in one of the two pairs of components: x ′i and xi or xi or x

′
i .

The remaining gadgets may be pebbled with red pebbles without

using any transitions.

4.2.5 Pebble Sink Path Gadget. The Pebble Sink Path Gadget

is used to take up 3n − 4k − 6 pebbles that were used in the k-
True-Variables gadget (and were left over after passing through

the gadget) leaving only 5 pebbles for the remaining parts of the

winning path. The Pebble Sink Path occurs directly after the clause

gadgets path and must be pebbled before the clause gadgets are

pebbled. This sink path consists of 3n − 4k − 6 pyramid gadgets of

successively smaller value starting from 3n − 4k − 1. See Fig. 10 for
an example.

Figure 10: Pebble sink that captures 3n−4k−6 pebbles leaving
5 pebbles to be used in the clauses. Here д = 3n − 4k − 1.

4.2.6 Clause Gadget. After the set of 3-or-None gadgets comes

the Clause gadgets which are used to ensure that the 3SAT clauses

are satisfied by the assignments. The clause gadget can only be

pebbled with the 5 extra pebbles that remain after the pebble sink

has been pebbled. Given that all 2k transitions are used in Phase 2
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and/or the pebbling 3-or-None gadgets phase, no transitions can be

spent in Phase 3 or pebbling the clause gadgets. The output of the

clause path must be connected to each vertex of the Pebble Sink

Path gadget. See Fig. 11.

Finally, the target vertex can be pebbled with a red pebble if and

only if all previous gadgets are pebbled according to the necessary

rules and conditions. The 2k + 1 nodes from the All-False gadget

are also predecessors of this target vertex.

Figure 11: Clause gadget.

For an example reduction, see Fig. 12. The target vertex that

must be pebbled is the one colored blue.

Lemma 16. The clause gadget can be pebbled with 5 pebbles (not
including the red pebble on pi−1) if and only if at least one of the
variable gadgets that connects to it is set in the true configuration.

4.3 Red-Blue Pebbling is W[1]-hard
In this section, we prove that red-blue pebbling parameterized

by the number of transitions is W[1]-hard using the gadgets as

specified in Section 4.2. An example construction is shown in Fig. 12.

The order of the pebbling is given as the following. First, the variable

gadgets are pebbled during Phase 1 of the pebbling which pebbles

each pyramid gadget in each variable with a red pebble. Then, the

All-False gadget is pebbled which results in all x ′i and xi nodes being
pebbled with red pebbles. During Phase 2 of pebbling the variable

gadgets, k variables are switched from the false configuration to

the true configuration. This in total uses the entirety of the allowed

2k transitions. To ensure the 2k transitions are used in this phase,

the 3-or-None gadgets are pebbled using only 5 red pebbles and no

transitions. After the 3-or-None gadgets are pebbled, we pebble the

Pebble Sink Path gadget which consumes 3n − 4k − 6 pebbles. The
clause gadgets are pebbled with the remaining 5 pebbles not used

in the pebble sink path. Finally, the variable gadgets are pebbled

completely using all the pebbles during Phase 3 and the target node

as indicated in Fig. 12 pebbled with a red pebble. The total number

of red pebbles necessary is r = 7n − 2k + 1 and the total number of

transitions is t = 2k .

Theorem 4. The red-blue pebble game parameterized by the num-
ber of transitions k is W[1]-hard.

5 OPEN PROBLEMS
We conclude this paper with several open questions:

(1) Are red pebbling number and minimum number of transi-

tions hard to approximate?

(2) Does there exist FPT algorithms for restricted class of graphs

(such as bounded width graphs)?

(3) Is finding the red pebbling number W[1]-hard? Recall in this

paper that we proved W[1]-hardness only for transitions,

not for number of red pebbles.
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3-or-None 
Gadgets

Figure 12: Example W[1]-hardness reduction for the red-blue pebble game. The vertex colored blue is the vertex that must be
pebbled at the end and can only be pebbled if and only if the 3SAT instance has a solution that sets exactly k variables to True
and uses at most 2k transitions.
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