
CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 5

These lecture notes have not undergone rigorous peer-review. Please email quanquan.liu@yale.edu if
you see any errors.

1 Introduction

We continue with our discussion of estimating the average degree today. Recall the problem I posed at the
end of class from last week. The question is: given an input graph G = (V,E), direct (orient) the edges of
the graph from the lower degree endpoint to higher degree endpoint (breaking ties by vertex ID). What is
the maximum outdegree of any vertex?

We’ll now show that the maximum outdegree is bounded by
√
2m where m is the number of edges in

the graph. First, note that in order for an edge to be oriented from vertex u to v, the degree of v must be
at least the degree of u. Hence, in order for v to have out-degree X , the edges from v must be to vertices
with degree at least X . Thus, assuming that v has out-degree X which is equal to the maximum out-degree,
X2 ≤ 2m since each of m edges can contribute to at most 2 vertex’s degree; then X ≤

√
2m.

We have thus proven the following lemma.

Lemma 1.1. Given a graph G = (V,E) with m edges and unique vertex IDs in [n], when all edges are
oriented from low-degree to high-degree vertices (breaking ties by smaller vertex ID), the maximum out-
degree of any vertex is

√
2m.

We now proceed with the main subject of today’s class which is estimating the average degree of ver-
tices in the adjacency-list sublinear model. Today’s lecture if based off the recent paper of Eden, Ron and
Seshadhri [ERS17]. In the previous lecture, we discussed an algorithm for estimating the average degree by
bucketing vertices by degree and sampling from these buckets. We completely disregard buckets with too
small samples and use the counts from the remaining buckets to produce our estimate. In today’s class, in-
stead of counting each edge twice as in the case of the bucketing algorithm, we instead count each edge once
and assign the responsibility of counting that edge to the lower degree endpoint (breaking ties by smaller
index).

We first start with some definitions.

Theorem 1 (Total Ordering). A total ordering ≺ on vertices of G = (V,E) is an ordering where for
any pair of distinct vertices u ̸= v ∈ V , u ≺ v if and only if either:

• deg(u) < deg(v), or

• deg(u) = deg(v) and ID(u) < ID(v).

Let deg+(v) be the out-degree of vertex v in the ordering.

Our goal today is to estimate deg+(v). First, note the following simple observation.

Observation 1.2.
∑

v∈V deg+(v) = nd
2 .

The observation holds since
∑

v∈V deg+(v) = m and nd = 2m.

2 Algorithm

Now we introduce our algorithm with pseudocode given in Algorithm 1.
We now prove the first lemma which shows that the expectation of any Xi variable is equal to the average

degree.

Quanquan C. Liu quanquan@mit.edu 1

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 5

Algorithm 1: (1 + ε)-Approx Average Degree Estimation in Adjacency-List Sublinear Model

1 Function AvgDeg(ε, n)
2 k ← 16

ε2
·
√
n

3 for i← 1 to k do
4 Sample a vertex vi uniformly at random
5 Sample a neighbor ui ∈ N(vi) uniformly at random
6 if vi ≺ ui then
7 Xi ← 2 · deg(vi)
8 else
9 Xi ← 0

10 end
11 end
12 return d̃← 1

k ·
∑k

i=1Xi

Lemma 2.1. E[Xi] = d.

Proof. We use the Law of Total Expectation to write the following expressions.

E[Xi] =
∑
v∈V

(Pr[v is sampled from V] · E[Xi | v is sampled from V])

=
∑
v∈V

1

n
·
∑

u∈N(v)

(Pr[u is sampled from N(v) | v is sampled] · E[Xi | u and v are sampled])

=
∑
v∈V

1

n
·

∑
u∈N(v),v≺u

(
1

deg(v)
· 2 deg(v)

)
=

1

n
·
∑
v∈V

2 deg+(v) =
2m

n
.

The last line follows since the expression
∑

u∈N(v),v≺u 2 means that each of v’s out-degree neighbors
contributes 2 to the sum.

Now that we have shown the expectation, we will now upper bound the variance of each Xi.

Lemma 2.2. Var[Xi] ≤ 4
√
2m · d.

Proof. We know Var[Xi] = E[X2
i] − E[Xi]

2 ≤ E[X2
i]. Then, using the exact same calculation that we

Quanquan C. Liu quanquan@mit.edu 2

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 5

used in the proof of Lemma 2.1 except we substitute X2
i for Xi, we can show

E[X2
i] =

∑
v∈V

(
Pr[v is sampled from V] · E[X2

i | v is sampled from V]
)

=
∑
v∈V

1

n
·
∑

u∈N(v)

(
Pr[u is sampled from N(v) | v is sampled] · E[X2

i | u and v are sampled]
)

=
∑
v∈V

1

n
·

∑
u∈N(v),v≺u

(
1

deg(v)
· (2 deg(v))2

)
=

1

n
·
∑
v∈V

deg+(v) · (4 deg(v))

≤ 1

n
·

(∑
v∈V

deg+(v)

)
·
∑
v∈V

4 deg(v)

=
4
√
2m

n
·
∑
v∈V

deg(v) = 4
√
2m · d.

We now show our concentration bound using the median-of-means trick that we have seen before in our
previous lectures. Recall that the median of means trick averages the valuesof k independent triangles to
reduce the variance of by a factor of k given independent samples.

Lemma 2.3. Var
[
1
k

∑k
i=1Xi

]
= Var[Xi]

k .

Now, we can use Chebyshev’s inequality to bound our probability of success by at least 3/4; then we
can amplify the probability of success using the median trick by performing O(log(1/δ)) independent trials
to get a probability of success of at least 1− δ. Recall Chebyshev’s inequality below.

Theorem 2 (Chebyshev’s Inequality). Chebyshev’s Inequality states that for any (not necessarily pos-
itive) random variable X with finite expected value µ and finite non-zero variance σ2, the probability
that X is more than k standard deviations away from µ is at most 1/k2. Formally, it is expressed as:

P (|X − µ| ≥ k) ≤ Var[X]

k2

for all k > 0.

Theorem 2.4. Algorithm 1 gives a (1+ ε)-approximation of the average degree of input graph G = (V,E)

using O
(√

n log(1/δ)
ε2

)
with probability at least 1− δ.

Quanquan C. Liu quanquan@mit.edu 3

mailto:quanquan.liu@yale.edu

CPSC 768: SCALABLE AND PRIVATE GRAPH ALGORITHMS Lectures 5

Proof. Using Chebyshev’s inequality, we get that the probability of failure is at most

Pr
[
|d̃− E[d̃] > ε · d

]
≤ Var[d̃]

ε2d
2

=
4
√
2m · d

kε2d
2 where k is defined in Algorithm 1

=
4
√
2mn

kε22m

=
4n

kε2
√
2m

=

√
n

4
√
2m

since k =
16

ε2
·
√
n

<
1

4
since d ≥ 1.

Finally, we repeat the entire Algorithm 1 over O(log(1/δ)) trials to use the median trick to amplify our
probability of success to 1− δ.

This lecture uses notes from [Ass20] and [Ras20].

References

[Ass20] Sepehr Assadi. CS 514: Advanced Algorithms II – Sublinear Algorithms.
https://sepehr.assadi.info/courses/cs514-f21/lec2.pdf, 2020.

[ERS17] Talya Eden, Dana Ron, and C Seshadhri. Sublinear time estimation of degree distribution mo-
ments: The degeneracy connection. In 44th International Colloquium on Automata, Languages,
and Programming (ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[Ras20] Sofya Raskhodnikova. CS 591 Sublinear Algorithms. https://cs-people.bu.edu/sofya/sublinear-
course/slides/Sublinear20-lec17.pdf, 2020.

Quanquan C. Liu quanquan@mit.edu 4

mailto:quanquan.liu@yale.edu

	Introduction
	Algorithm

