CPSC 768:
Scalable and Private Graph Algorithms

Lecture 4: Approximate Average Degree in the
Sublinear Model

Quanquan C. Liu
gquangquan.liu@yale.edu

CPSC 768

Open Problem Session Results

« Difficult to schedule a time when everyone is free!
» Tuesdays/Thursdays were unpopular

* Proposed times:
 Monday 3pm
* Friday 3:30pm

* Thoughts”? Preferences?

CPSC 768

Sublinear Graph Model: Query Models

Third neighbor
* Adjacency list query model: of vis c
0 (1) time per query

* Degree queries: given a
vertex v € V, output
deg(v)

* Neighbor queries: given a
vertex vertex veV andi €
In], output the i-th
neighborofvor Lifi >

deg(v)

CPSC 768

Approximate Average Degree

» Given a graph in the adjacency list query model, compute the
approximate average degree d of the nodes in the graph

* d denotes the average degree
« Correct with probability at least 1 — §
» Constant, c-approximation
ec=1+c¢
*c=2+¢

CPSC 768

Lower Bounds

* When ¢ < 1, require linear queries
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

CPSC 768

Lower Bounds

* When ¢ < 1, require linear queries
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

Sampling and taking the average
degree doesn’t work in general

CPSC 768

Lower Bounds

* When ¢ < 1, require linear queries
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

Cycle on n vertices

Gy

Sampling and taking the average
degree doesn’t work in general

CPSC 768

Lower Bounds

* When ¢ < 1, require linear queries
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

Cycle on n vertices

Gy

n3 stars each with

2 1 G
degree 2n3 — 2 + ns3 2

CPSC 768

Sampling and taking the average
degree doesn’t work in general

Lower Bounds

* When ¢ < 1, require linear queries
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

Cycle on n vertices

Average Degree: 2

n3 stars each with

2 1 G
degree 2n3 — 2 + ns3 2

Gy

CPSC 768

Sampling and taking the average
degree doesn’t work in general

1 2 1 1
Average Degree: (n3: (2n§ -3+ n§) + 2(n—n3))/n= (4 —¢)

Lower Bounds

* When ¢ < 1, require linear queries
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

ns3 stars each with
Cycle on n vertices 2 1 G
2

degree 2ns — 3 + ns

Average Degree: 2

U Sampling and taking the average
Gl degree doesn’t work in general

CPSC 768

1 2 1 1
Average Degree: (n3: (2n§ -3+ n§) + 2(n—n3))/n= (4 —¢)

Lower Bounds

 When ¢ < 1, require |
* An empty graph
« Graph with 1 edge

- Hence we consider d > 1

Inear queries

n3 stars each with

Cycle on n vertices 2 1 GZ

degree 2ns — 2 + ns

Average Degree: 2

2
G4 Requires ﬂ(n§) samples

CPSC 768

1 2 1 1
Average Degree: (n3: (2n§ -3+ n§) + 2(n—n3))/n= (4 —¢)

Lower Bounds

* When ¢ < 1, require linear queries

Another problem: high variance,
small number of nodes make

large degree contributions n3 stars each with
2 1 G
2

degree 2ns — 2 + ns
% % Average Degree: 2
N
)~

2
G4 Requires ﬂ(n§) samples

CPSC 768

However, the strategy works for almost
regular graphs!

+ All vertices have degree in [d, 10d| for some known d

« Expectation of any sample is equal to d

1 1
* Ni=1y deg(ui) =~ Xi=1deg(y;) = d
o Sample k = 8—2 In (1) samples
Additive Chernoff Bound: Let Y;, Y5, ..., Y3, be independent random
variables with valuesin [0,1]and Y = },;_, Y;.Then, forany b > 1,

2
Pr||Y — E[Y]| > b] <2 :exp (—%)

CPSC 768

However, the strategy works for almost
regular graphs!

+ All vertices have degree in [d, 10d| for some known d

« Expectation of any sample is equal to d -
1 1 — Y; = deg(u;) notin
* di=1y deg(“i) = L= deg(uy) =d [0, 1],wh§t do we do?
o Sample k = 8—2 In (1) samples

Additive Chernoff Bound: Let Y;, Y5, ..., Y3, be independent random
variables with valuesin [0,1]and Y = },;_, Y;.Then, forany b > 1,

2
Pr||Y — E[Y]| > b] <2 :exp (—%)

CPSC 768

However, the strategy works for almost
regular graphs!

+ All vertices have degree in [d, 10d| for some known d

« Expectation of any sample is equal to d
- Full Analysis Left as an

o 7_1 1 . L) — l . n i) —
deg(ul) =1 deg(u;) = d Exercise for the Reader

o Sample k=="In (1) samples

82
Additive Chernoff Bound: Let Y;, Y5, ..., Y3, be independent random
variables with valuesin [0,1]and Y = },;_, Y;.Then, forany b > 1,

2
Pr||Y — E[Y]| > b] <2 :exp (—%)

CPSC 768

However, the strategy works for almost
regular graphs!

+ All vertices have degree in [d, 10d| for some known d

- Expectation of any sample is equal to d Normalization is a BIG
> 1 - deg(ui) = l° n _deg(u;) =d issue in general! Need
to normalize by 1/n!!

o Sample k = 8—2 In (1) samples v1/

Additive Chernoff Bound: Let Y;, Y5, ..., Y3, be independent random
variables with valuesin [0,1]and Y = },;_, Y;.Then, forany b > 1,

2
Pr||Y — E[Y]| > b] <2 :exp (—%)

CPSC 768

A (2 + &)-Approximate Algorithm

« Gets worse approximation but bucketing is a very important
concept used in many algorithms

CPSC 768

A (2 + e)-Approximate Algorithm

« Gets worse approximation but bucketing is a very important
concept used in many algorithms

« Separate estimating nodes with different degrees
. Let B = E (constant c)and t = 0 (log "), then i-th bucket is
defined as

E

CPSC 768

A (2 + e)-Approximate Algorithm

« Gets worse approximation but bucketing is a very important
concept used in many algorithms

« Separate estimating nodes with different degrees
. Let B = E (constant c)and t = 0 (log "), then i-th bucket is
defined as

E

B;={veV|(1+p) " <deg(w) < (1+p)}

fori € {0,1,...,t — 1}

CPSC 768

A (2 + e)-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of
each bucket

* Knowing the correct sizes lets us get good approximations
of the average degree

CPSC 768

A (2 + &)-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of
each bucket

* Knowing the correct sizes lets us get good approximations
of the average degree

* Problem: some buckets are small with large degrees!

CPSC 768

A (2 + &)-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of
each bucket

* Knowing the correct sizes lets us get good approximations
of the average degree

* Problem: some buckets are small with large degrees!
« Solution: just ignore the small buckets

CPSC 768

A (2 + &)-Approximate Algorithm

- Key point: intuitively we want to correctly estimate sizes of
each bucket

* Knowing the correct sizes lets us get good approximations
of the average degree

* Problem: some buckets are small with large degrees!
« Solution: just ignore the small buckets

Also the classification of small or large
depends on our samples

CPSC 768

A (2 + &)-Approximate Algorithm

You've seen log (%) - =

2

« Algorithm: factors many times now!
« Take |S| = (\/_ log() - log* n) samples

CPSC 768

A (2 + &)-Approximate Algorithm

* Algorithm:
« Take |S| = (\/_ log() - log* n) samples
*Forie {O U — 1} Iterate through every

bucket

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm:
« Take |S| = (\/_ log() - log* n) samples
Forie{0,..,t—1} Figure out how many
¢S, <5nN Bl- sampled elements are in
each bucket

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm:

» Take |S| = (\/_ log()
Forie{0,..,t—1}:
Y <—SnB

If|S|>\/; —, then set p; «

CPSC 768

- log* n) samples

1S3l
S|

If large number of samples,
go ahead and estimate size
of the bucket

A (2 + e)-Approximate Algorithm

* Algorithm:

» Take |S| = (\/_ log()

Forie{0,..,t—1}:
Y <—SnB

o If |S;| = \/; , then set p; «

* Else, p; < 0

CPSC 768

- log* n) samples

1S3l
S|

Otherwise, bucket is small
and ignore the bucket

A (2 + e)-Approximate Algorithm

* Algorithm:
« Take |S| = (\/_ log() - log* n) samples
Fori € {0,..,t —1}:
*S;<SnN B
o If |S;| = \/; — then set p; < || ill

* Else, p; < 0
* Return YiZ3 p; (1 + p)+1

Return number of
elements in the bucket
times degree of bucket

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: * First, let's compute E|p;]
. Take S| = (\/ﬁ log (1)
log n) samples
-ForzE{O Lt —1}:
¢ S; < 8SN B

o If |S;] = = ||thenset
n Ct

» Return Zl api(1+p)1

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: * First, let’'s compute E|[p;]
. Take S| = (\/ﬁ log (1) sl 9j
S =E ZJ 15|
log n) samples ' ' .
. a] = 1 if sample j falls in bucket

y For i €10,..,t =1} i ‘and 0 otherwise

*S;i<SnN B

o If |S;] = \F , then set

|Sl-| n Ct
Pi Is|
* Else, p; « 0

» Return Y23 p;(1 + g+ 1

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: * First, let's compute [pi]
. Take S| = (\/ﬁ log (1)] Elzlsl "J
log n) samples 151 /=S|
. a] = 1 if sample j falls in bucket
y For i €10, ...t =1} i'and 0 otherwise

AN B « Each sample has probablllty
o If |S;] = \E ~ , then set of being in bucket i
Sl
Pi < Tor |B;|
S| A
- Else, pl<—0 | ,ElzlSl i] (|5| n) _ 1Bil
* Return Y22 p; (1 + p)i1 J=1]s] S| n

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm:
. Take S| = (\/ﬁ log (1)
log n) samples
. ForzE{O Lt —1}:

With enough samples from the
bucket we can estimate the size of

.S, < SN B the bucket!
o If |S;] = z — then set)
Sl
Pi < T |B]|
S| A
- Else, pl<—0 | ,ElzlSl ﬁ] (|5| n) _ 1Bil
* Return Y22 p; (1 + p)i1 J=1]s] S| n

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: * Do we get enough samples?
. Take S| = (\/ﬁ log (1)
log n) samples
-ForzE{O Lt —1}:
¢ S; < 8SN B

o If |S;] = = ||thenset
n Ct

» Return Zl api(1+p)1

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm: * Do we get enough samples’?

1

log n) samples
 Fori e {0,..,t — 1} = 108 = 108 (Tl)
S5, <S5nN B

o If [S;] = \F then set
n Ct

» Return Zl api(1+p)1

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm: * Do we get enough samples’?
1
log n) samples
_ «>1o 1o 2(n)
. Forz €{0,..,t —1}: g £z 8
¢ S5;<5nN B
o If |S;| = % % then set Large enough sample using the
p; Isil techniques we’ve learned (i.e.
S| : .
+ Else, p; « 0 Chernoff bound and median trick)

» Return Y!iZ5 p;(1 + p)V1

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm: * Do we get enough samples’?
1
log n) samples
_ «>1o 1o 2(n)
-ForzE{O ,t—1}: g £z 8
S5, <S5nN B
 If S| = |=- u then set
| l||S'| n et Extra factors of log(n) is for union

Pi < 51 bound over all vertices

* Else, p; « 0

» Return Y23 p;(1 + g+ 1

CPSC 768

A (2 + e)-Approximate Algorithm

* Algorithm: * Do we get enough samples’?
1
log n) samples n ,
 Fori e {0,..,t — 1} = 108 r 108 (n)
S5, <S5nN B
o If [S;] = a u then set
s V€ o Hence, we get
P s |B;|
* Else, p; < 0 | (1 + €)-approx. of —
« Return Y25 p;(1 + B)1 n

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: « Show what our estimate gets:

. Take S| = (\/ﬁ log (1)
log n) samples

. ForzE{O Lt —1}:
S5, <S5nN B

o If [S;] = \F then set
n Ct

» Return Zl api(1+p)1

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: * Show what our estimate gets:
. Take S| = (\/ﬁ log (1) » First, XiZopi(1+)t <d

= log? n) samples * Accurate p, .
* This is because degree In

 Fori e {0, ...,t =1} each bucket i lower bounded
-Sl<—SnB by (1 +)1
o If [S;] = \F then set
n Ct
s
pl |S|
* Else, p; « 0

» Return Y23 p;(1 + g+ 1

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: * Show what our estimate gets:
- Take |S| = @ (va - log ;) - « First, XiZo pi(1+)t < d
1 . . A t
= log? n) samples ccurate p;

. EF . , * This is because degree In
ori €{0,..,t —1}: each bucket i lower bounded
*5; < SNB; by (1+ B~
CIf S| > |E ISl then set « Approximate p; is (1 + €)-

il = |7 o : |Bil
54| estimate of —

n

. e ——
pl |S|

t—1

o EISG, pP; < 0 i)

» Return X223 p;(1 + B)H1 zpi(l +B8) 1< +¢)-d
=0

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: « Show what our estimate gets: 4
. Take S| = (\/ﬁ log (1) « First, Xisopi(1+)= -p)-d

= log? n) samples * Accurate p;
* This is because degree in each

. FOFl €{0,..,t — 1} bucket i lower bounded by
-Sl<—SnB 1+p)?!
o If [S;] = \F then set
n Ct
s
pl |S|
* Else, p; « 0

» Return Y23 p;(1 + g+ 1

CPSC 768

A (2 + e)-Approximate Algorithm

 Algorithm: « Show what our estimate gets: 4
. Take S| = (\/ﬁ log (1) « First, Xisopi(1+)= -p)-d

= log? n) samples * Accurate p;
* This is because degree in each

’ FO” €10,...,t — 1} bucket i lower bounded by
-Sl<—SnB (1+ L)1
CIF IS] > \F then set . Apgroxmate pi is (1 + £)-estimate
U= n ct’ Ofl
sl n
pl |S|

* Else, p; « 0 _ _
* Return Y22 p; (1 + p)i1 z p;(1+p)1t>(1-¢e)?%-d

CPSC 768

A (2 + &)-Approximate Algorithm

* How much do we lose from
our ignored buckets?
* Big-big: both endpoints
belong to big buckets

 Counted from both
sides

CPSC 768

A (2 + &)-Approximate Algorithm

* How much do we lose from
our ignored buckets?

* Big-big: both endpoints
belong to big buckets

 Counted from both
sides

* Big-small: one endpoints
In big bucket one in small

« Count from one side
« 2-approx

CPSC 768

A (2 + €)-Approximate Algorithm | Fresvenou

assumption that d>1!

* How much do we lose from « How much do we lose from our

our ignored buckets? ignored buckets?
* Big-big: both endpoints » Small-small: both endpoints in
belong to big buckets small buckets
* Counted from both
sides

* Big-small: one endpoints
In big bucket one in small

« Count from one side
« 2-approx

CPSC 768

A (2 + €)-Approximate Algorithm | Fresvenou

assumption that d>1!

* How much do we lose from « How much do we lose from our

our ignored buckets? ignored buckets?
* Big-big: both endpoints » Small-small: both endpoints in
belong to big buckets small buckets
» Counted from both . |B;| < 2(Ven) whp
sides ct

* Big-small: one endpoints
In big bucket one in small

« Count from one side
« 2-approx

CPSC 768

A (2 + £)-Approximate Algorithm | Freevenow

assumption thatd > 1!

* How much do we lose from « How much do we lose from our

our ignored buckets? ignored buckets?
* Big-big: both endpoints » Small-small: both endpoints in
belong to big buckets small buckets
» Counted from both . |B;| < Z(W) whp
sides ‘
 Big-small: one endpoints Atmostt-2- \/; = 2\{? nodes
In big bucket one in smal in small buckets

« Count from one side

2
* 2-approx At most (2@) = 0(e-n) edges

C

CPSC 768

Food for Thought Till Next Time

* (1 + &)-approx. for average degree + useful graph property!

CPSC 768

Orient all edges from low to
high degree, what’s the max
out-degree that you see?

