
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 11 and 12: Differential Privacy Tools and
Graphs

CPSC 768

Announcements

• Check the latest announcement on Canvas:
• Scheduling Lectures survey: due Feb. 26
• Final Project Proposal: due Feb. 29, one page
• Final Project Examples

• Open problem sessions:
• Link for joining CPSC 768 Slack
• Open Problem Session food orders

CPSC 768

Private Analysis of Graph Data

🤣

🙂

😳
😊

😃😀

Graph 𝐺 Trusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Answers

Queries

CPSC 768

Private Analysis of Graph Data

Two conflicting goals:
• Accurate outputs
• Data privacy

🤣

🙂

😳
😊

😃😀

Graph 𝐺 Trusted Curator Users

Answers

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Queries

CPSC 768

Private Analysis of Graph Data

Two conflicting goals:
• Accurate outputs
• Data privacy

🤣

🙂

😳
😊

😃😀

Graph 𝐺 Trusted Curator Users

Answers

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Queries

CPSC 768

• Neighboring inputs differ in some information we’d like to hide
Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺
and 𝐺′ and all sets of possible outputs 𝑆:

Pr 𝒜 𝐺 ∈ 𝑆 ≤ 𝑒! ⋅ Pr 𝒜 𝐺" ∈ 𝑆 .

🤣

🙂

😳😊

😃😀

Graph 𝐺 Trusted Curator
Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Answers

Queries

(Central Model of) Differential Privacy

CPSC 768

Edge-Neighboring Graphs

• Edge-neighboring graphs: differ in one edge

🤣

🙂

😳
😊

😃😀

🤣

🙂

😳
😊

😃😀

CPSC 768

• Edge-neighboring graphs: differ in one edge
Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺
and 𝐺′ and all sets of possible outputs 𝑆:

Pr 𝒜 𝐺 ∈ 𝑆 ≤ 𝑒! ⋅ Pr 𝒜 𝐺" ∈ 𝑆 .

🤣

🙂

😳😊

😃😀

Graph 𝐺 Trusted Curator
Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Answers

Queries

(Central Model of) Differential Privacy

CPSC 768

Answers

Queries

🤣

🙂

😳😊

😃😀

Graph 𝐺 Trusted Curator
Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

https://www.npr.org/2021/04/09/98600582
0/after-data-breach-exposes-530-million-
facebook-says-it-will-not-notify-users

https://www.bleepingcomputer.com/news/s
ecurity/marriott-confirms-another-data-

breach-after-hotel-got-hacked/

https://www.malwarebytes.com/blog/news/
2021/06/second-colossal-linkedin-breach-in-

3-months-almost-all-users-affected

(Central Model of) Differential Privacy

CPSC 768

Answers

Queries

(Central Model of) Differential Privacy

🤣

🙂

😳😊

😃😀

Graph 𝐺 Trusted Curator
Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

https://www.npr.org/2021/04/09/98600582
0/after-data-breach-exposes-530-million-
facebook-says-it-will-not-notify-users

https://www.bleepingcomputer.com/news/s
ecurity/marriott-confirms-another-data-

breach-after-hotel-got-hacked/

https://www.malwarebytes.com/blog/news/
2021/06/second-colossal-linkedin-breach-in-

3-months-almost-all-users-affected

Unrealistic trust
in trusted curator

CPSC 768

Weaker Notion of Trust: Local Model
Users

Answers

Answers🙂

😳
😊

😃😀

🤣

Graph 𝐺 Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Aggregate

• Each node publishes privatized output
• Curator computes aggregated statistics using outputs

Queries

CPSC 768

Users

Answers

Answers🙂

😳
😊

😃😀

🤣

Graph 𝐺 Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Aggregate

• Each node publishes privatized output
• Curator computes aggregated statistics using outputs

Queries

Weaker Notion of Trust: Local Model

CPSC 768

Users

Answers

Answers🙂

😳
😊

😃😀

🤣

Graph 𝐺 Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Aggregate

• Each node publishes privatized output
• Curator computes aggregated statistics using outputs

Queries

Weaker Notion of Trust: Local Model

CPSC 768

Users

Answers

Answers🙂

😳
😊

😃😀

🤣

Graph 𝐺 Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

• Each node publishes privatized output
• Curator computes aggregated statistics using outputs

Queries

Aggregate
Strong notion of privacy:
Individuals trust no one!

Weaker Notion of Trust: Local Model

CPSC 768

Users

Answers

Answers🙂

😳
😊

😃😀

🤣

Graph 𝐺 Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

• Each node publishes privatized output
• Curator computes aggregated statistics using outputs

Queries

Aggregate
Strong notion of privacy:
Individuals trust no one!

Weaker Notion of Trust: Local Model

CPSC 768

Local Edge Differential Privacy (LEDP)

Local Randomizer
[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

An 𝜺-local randomizer ℛ is an 𝜀-differentially private algorithm that
takes as input an adjacency list 𝒂 and public information.

ℛ
𝒂 = (B, C, E)B C

A

E
Public Information

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣
Round 1

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣
Round 1

𝑥 𝑥 𝑥
𝑥

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣ℛ%(𝒂𝒗, 𝑥)

ℛ%(𝒂𝒖, 𝑥)

ℛ%(𝒂𝒃, 𝒙)

ℛ%(𝒂𝒅, 𝑥)
Round 1: 𝑥 is public info

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Publish

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣

Round 2: 𝑦 is public info

𝑦
𝑦

𝑦𝑦

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣ℛ*(𝒂𝒗, 𝒚)

ℛ*(𝒂𝒖, 𝒚)

ℛ*(𝒂𝒃, 𝒚)

𝓡𝟐(𝒂𝒅, 𝒚)
Round 2: 𝑦 is public info

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣
Round 2

CPSC 768

Local Edge Differential Privacy (LEDP)
Untrusted Curator

Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds
in distributed graph using

local randomizers

𝑢

𝑑

𝑏

𝑣
Round 2

Relevant Complexity
Measure:

Number of Rounds
of Communication

CPSC 768

Local Edge Differential Privacy (LEDP)
Local Edge Differential Privacy

[DLRSSY ‘22 Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

Let algorithm	𝒜	use (potentially different) local randomizers	ℛ%,, … , ℛ-, and
ℛ%., … , ℛℓ.	on nodes 𝑢, 𝑣 with privacy parameters 𝜀%,, … , 𝜀-, and 𝜀%., … , 𝜀ℓ..

𝒜 is 𝜺-local edge differentially private (𝜺-LEDP) if for every edge 𝑢, 𝑣 ,	
𝜀%, +⋯+ 𝜀-, + 𝜀%.⋯+ 𝜀ℓ. ≤ 𝜀.

ℛ#$, 𝜀#$
𝑢

𝑣 ⋯ ℛℓ
$, 𝜀ℓ$

ℛ#& , 𝜀#& ⋯ ℛ'& , 𝜀'&

𝜀!" +⋯+ 𝜀#" + 𝜀!$⋯+ 𝜀ℓ$ ≤ 𝜀

CPSC 768

• Local edge differentially private algorithms:
• Relatively new direction
• k-Core Decomposition, Densest Subgraphs, Low Out-degree

Ordering: [Dhulipala-Liu-Raskhodnikova-Shi-Shun-Yu ‘22, Dinitz-
Kale-Lattanzi-Vassilvitskii ‘23, Dhulipala-Li-Liu ‘23]

• Triangle and other subgraph counting: [Imola-Murakami-
Chaudhuri ‘21, ’22; Eden-Liu-Raskhodnikova-Smith ‘23]

• Other graph problems in empirical settings in “decentralized”
privacy models [Sun-Xiao-Khalil-Yang-Qin-Wang-Yu ‘19; Qin-Yu-Yang-
Khalil-Xiao-Ren ‘17; Gao-Li-Chen-Zou ‘18; Ye-Hu-Au-Meng-Xiao ‘20]

Related Work

CPSC 768

Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋(∈ 0, 1 for each individual
(i.e. has COVID)

CPSC 768

Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋(∈ 0, 1 for each individual
(i.e. has COVID)

• Randomly report the same bit or flipped bit:

• 𝑌) = 8 𝑋) w. p.½ + 𝜀
1 − 𝑋) w. p.½ − 𝜀

CPSC 768

Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋(∈ 0, 1 for each individual
(i.e. has COVID)

• Randomly report the same bit or flipped bit:

• 𝑌) = 8 𝑋) w. p.½ + 𝜀
1 − 𝑋) w. p.½ − 𝜀

• Sum of 𝑌) bits: 𝑂 (
!

error but locally private

CPSC 768

Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋(∈ 0, 1 for each individual
(i.e. has COVID)

• Randomly report the same bit or flipped bit:

• 𝑌) = 8 𝑋) w. p.½ + 𝜀
1 − 𝑋) w. p.½ − 𝜀

• Sum of 𝑌) bits: 𝑂 (
!

error but locally private

• Geometric mechanism: 𝑂 #
!

error but not locally private

CPSC 768

Locally Private Triangle Counting

CPSC 768

Locally Private Triangle Counting

Central DP vs. LEDP

CPSC 768

Locally Private Triangle Counting

Central DP vs. LEDP

Triangle
Counting

DP Upper Bound

𝑶 𝒏
𝜺

 additive error
(trivial)

LEDP Lower Bound

𝛀 𝒏𝟑/𝟐

𝜺 additive error
(multiple rounds)

𝛀 𝒏𝟐

𝜺 additive error
(one round)

[Eden-Liu-Raskhodnikova-Smith ICALP ‘23]

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
Each node holds

their own adjacency
list as private info

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),(where 𝑋),' = 1 − 𝑎),' with

probability #
,!+#

and 𝑎),' otherwise

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),(where 𝑋),' = 1 − 𝑎),' with

probability #
,!+#

and 𝑎),' otherwise Releasing noisy upper
triangular matrix

1 𝟎 𝟏
0 1 𝟎
0 0 1

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),(where 𝑋),' = 1 − 𝑎),' with

probability #
,!+#

and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←

.",$⋅ ,!+# 0#
,!0#

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),(where 𝑋),' = 1 − 𝑎),' with

probability #
,!+#

and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←

.",$⋅ ,!+# 0#
,!0#

• For all 𝑖, 𝑗, 𝑘 ∈ (
1 , set 𝑍),',2 ← 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2

Normalized 𝒀𝒊,𝒋 so
that 𝑬 𝒁𝒊,𝒋,𝒌 = 𝟏 if

triangle exists
and	𝟎	otherwise

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),(where 𝑋),' = 1 − 𝑎),' with

probability #
,!+#

and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←

.",$⋅ ,!+# 0#
,!0#

• For all 𝑖, 𝑗, 𝑘 ∈ (
1 , set 𝑍),',2 ← 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2

• Return M𝑻 ← ∑
𝒊,𝒋,𝒌 ∈ %

&
𝒁𝒊,𝒋,𝒌

CPSC 768

One-Round Locally Private Triangle Counting
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = (𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),(where 𝑋),' = 1 − 𝑎),' with

probability #
,!+#

and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←

.",$⋅ ,!+# 0#
,!0#

• For all 𝑖, 𝑗, 𝑘 ∈ (
1 , set 𝑍),',2 ← 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2

• Return M𝑻 ← ∑
𝒊,𝒋,𝒌 ∈ %

&
𝒁𝒊,𝒋,𝒌

Therefore, 𝑬 ?𝑻 = 𝑻

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles
in the input graph

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles
in the input graph

• Proof:
• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles
in the input graph

• Proof:
• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#
, why?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles
in the input graph

• Proof:
• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#
, why?

• If 𝑖, 𝑗 ∈ 𝐸, probability doesn’t flip is ,!

,!+#
; otherwise,

probability flips is #
,!+#

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles
in the input graph

• Proof:
• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#
, why?

• If 𝑖, 𝑗 ∈ 𝐸, probability doesn’t flip is ,!

,!+#
; otherwise,

probability flips is #
,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

CPSC 768

Analysis of the Expectation and Variance

• Proof:
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

CPSC 768

Analysis of the Expectation and Variance

• Proof:
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

• If 𝑖, 𝑗 ∈ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
'!

'!() ⋅ ,!+# 0#

,!0#
= ,!0#

,!0#
= 1

CPSC 768

Analysis of the Expectation and Variance

• Proof:
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

• If 𝑖, 𝑗 ∈ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
'!

'!() ⋅ ,!+# 0#

,!0#
= ,!0#

,!0#
= 1

• If 𝑖, 𝑗 ∉ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
)

'!() ⋅ ,!+# 0#

,!0#
= 0

CPSC 768

Analysis of the Expectation and Variance

• Proof:
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

• If 𝑖, 𝑗 ∈ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
'!

'!() ⋅ ,!+# 0#

,!0#
= ,!0#

,!0#
= 1

• If 𝑖, 𝑗 ∉ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
)

'!() ⋅ ,!+# 0#

,!0#
= 0

• Finally, 𝐸 𝑍),',2 = 𝐸 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2 = 𝐸 𝑌),'] ⋅ 𝐸 𝑌',2 ⋅ 𝐸[𝑌),2 = 1),',2

CPSC 768

Analysis of the Expectation and Variance

• Proof:
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

• If 𝑖, 𝑗 ∈ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
'!

'!() ⋅ ,!+# 0#

,!0#
= ,!0#

,!0#
= 1

• If 𝑖, 𝑗 ∉ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
)

'!() ⋅ ,!+# 0#

,!0#
= 0

• Finally, 𝐸 𝑍),',2 = 𝐸 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2 = 𝐸 𝑌),'] ⋅ 𝐸 𝑌',2 ⋅ 𝐸[𝑌),2 = 1),',2
• Linearity of expectations gives 𝐸 V𝑇 = 𝐸 ∑)'2∈ (& 𝑍),',2 = 𝑇

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' ?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# + Bernoulli variable

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# +

• Var 𝑌),' = Var .",$⋅ ,!+# 0#
,!0#

?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# +

• Var 𝑌),' = Var .",$⋅ ,!+# 0#
,!0#

= #
,!0# + ⋅ Var 𝑋),' ⋅ 𝑒! + 1 − 1 =

,!+# +

,!0# + ⋅ Var 𝑋),' = ,!

,!0# +

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# +

• Var 𝑌),' = Var .",$⋅ ,!+# 0#
,!0#

= #
,!0# + ⋅ Var 𝑋),' ⋅ 𝑒! + 1 − 1 =

,!+# +

,!0# + ⋅ Var 𝑋),' = ,!

,!0# +

• Var 𝑍),',2 = 𝐸 𝑍),',2- − 𝐸 𝑍),',2
-
= 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2-

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# +

• Var 𝑍),',2 = 𝐸 𝑍),',2- − 𝐸 𝑍),',2
-
= 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2-

• 𝐸 𝑌),'- = Var 𝑌),' + 𝐸 𝑌),'
-
= ,!

,!0# + = Θ #
!+ 𝒆𝜺 ∈ 𝟏, 𝟑 for

𝜺 ∈ 𝟎, 𝟏

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# +

• Var 𝑍),',2 = 𝐸 𝑍),',2- − 𝐸 𝑍),',2
-
= 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2-

• 𝐸 𝑌),'- = Var 𝑌),' + 𝐸 𝑌),'
-
= ,!

,!0# + = Θ #
!+

• 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2- = Θ #
!,

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = ∑
),',2 ∈ %

&
Var 𝑍),',2

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

Not true Var ∑
',#,) ∈ !

"
𝑍',#,) = ∑

',#,) ∈ !
"
Var 𝑍',#,) , why?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

Not true Var ∑
',#,) ∈ !

"
𝑍',#,) = ∑

',#,) ∈ !
"
Var 𝑍',#,) , why?

Share 𝒀𝒊,𝒋 variables;
triangles share edges!

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

Not true Var ∑
',#,) ∈ !

"
𝑍',#,) = ∑

',#,) ∈ !
"
Var 𝑍',#,) , why?

Share 𝒀𝒊,𝒋 variables;
triangles share edges!

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Consider change of variables 𝑈),',2 = 𝑍),',2 − 1),',2

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Consider change of variables 𝑈),',2 = 𝑍),',2 − 1),',2

𝑬 𝑼𝒊,𝒋,𝒌 = 𝟎 and 𝐕𝐚𝐫 𝑼𝒊,𝒋,𝒌 = 𝐕𝐚𝐫 𝒁𝒊,𝒋,𝒌

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges
Non-zero covariance: share an edge; how many?

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges
Non-zero covariance: share an edge; number of 4-cycles

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) =

Var ∑
),',2 ∈ %

&
𝑈),',2 ≤ ∑

),',2 ∈ %
&
Θ #

!,

+ _
),',2,9 ∈8*

𝐸 𝑈),',2 ⋅ 𝑈',2,9

CPSC 768

Analysis of the Expectation and Variance
• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*

!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) =

Var ∑
),',2 ∈ %

&
𝑈),',2 ≤ ∑

),',2 ∈ %
&
Θ #

!,
+

_
),',2,9 ∈8*

𝐸 𝑈),',2 ⋅ 𝑈',2,9 ≤ _
),',2,9 ∈8*

𝐸 𝑌),' ⋅ 𝑌',2- ⋅ 𝑌),2 ⋅ 𝑌9,' ⋅ 𝑌9,2

≤ _
),',2,9 ∈8*

𝐸 𝑌',2-

CPSC 768

Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof:
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) =

Var ∑
),',2 ∈ %

&
𝑈),',2 ≤ ∑

),',2 ∈ %
&
Θ #

!,

+ _
),',2,9 ∈8*

𝐸 𝑈),',2 ⋅ 𝑈',2,9 ≤ Θ
𝑛1

𝜀:
+ _

),',2,9 ∈8*

𝐸 𝑌',2- = Θ
𝑛1

𝜀:
+
𝐶;
𝜀-

CPSC 768

On Wednesday, more DP mechanisms!

• Laplace mechanism
• (Geometric mechanism—already discussed)
• Exponential mechanism
• Gaussian mechanism
• Privacy amplification via subsampling

CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 12: Differential Privacy Mechanisms

CPSC 768

Announcements

• Check the latest announcement on Canvas:
• Scheduling Lectures survey: due Feb. 26
• Final Project Proposal: due Feb. 29, one page (email to

me)
• Final Project Examples

• Open problem sessions:
• Link for joining CPSC 768 Slack
• Open Problem Session food orders

CPSC 768

Global Sensitivity

• Intuition: Measure of how different the output of a function is
on neighboring input

CPSC 768

Global Sensitivity

• Intuition: Measure of how different the output of a function is
on neighboring input

Definition (Global Sensitivity): The global sensitivity of a
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.

where 𝐺 and 𝐺′ are edge-neighboring graphs.

CPSC 768

Global Sensitivity Examples

• What is the global sensitivity of the following problems (assuming
for each we have a function that gives the exact solution):

• Triangle counting
• Maximum matching
• Average Degree

Definition (Global Sensitivity): The global sensitivity of a
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.

where 𝐺 and 𝐺′ are edge-neighboring graphs.

CPSC 768

Global Sensitivity Examples

• What is the global sensitivity of the following problems (assuming
for each we have a function that gives the exact solution):

• Triangle counting
• Maximum matching
• Average Degree

Definition (Global Sensitivity): The global sensitivity of a
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.

where 𝐺 and 𝐺′ are edge-neighboring graphs.

𝑛	
𝐺 𝐺′

CPSC 768

Global Sensitivity Examples

• What is the global sensitivity of the following problems (assuming
for each we have a function that gives the exact solution):

• Triangle counting: 𝒏
• Maximum matching: 𝟏
• Average Degree: 𝟐/𝒏

Definition (Global Sensitivity): The global sensitivity of a
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.

where 𝐺 and 𝐺′ are edge-neighboring graphs.

CPSC 768

Laplace Distribution
• The PDF of 𝑋 ∈ 𝑅 is: Lap 𝑏 = #

-<
⋅ exp − .

<

CPSC 768

Laplace Distribution
• The PDF of 𝑋 ∈ 𝑅 is: Lap 𝑏 = #

-<
⋅ exp − .

<
Larger 𝑏

heavier tails

CPSC 768

Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

Δ+

CPSC 768

Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

CPSC 768

Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

𝑒!-factor

CPSC 768

Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

𝑒!-factor

Larger Δ= means
need a flatter curve

CPSC 768

Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Proof: Consider neighboring graphs 𝐺 and 𝐺" and function
𝑓: 𝐺 → 𝑅. Let 𝒑 and 𝒑′ denote the probability density functions of
𝒇 𝑮 + 𝑳𝒂𝒑

𝚫𝒇
𝜺

and 𝒇 𝑮′ + 𝑳𝒂𝒑 𝚫𝒇
𝜺

, respectively. Then, for an
arbitrary point 𝑧 ∈ 𝑅:

𝑝 𝑧
𝑝" 𝑧

=
exp − 𝜀 𝑓 𝐺 − 𝑧

Δ=

exp − 𝜀 𝑓 𝐺" − 𝑧
Δ=

CPSC 768

Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=, 𝒇 𝑮 +
𝑳𝒂𝒑

𝚫𝒇
𝜺

is 𝜀-differentially private.
• Proof:

= exp −
𝜀 𝑓 𝐺" − 𝑧 − 𝑓 𝐺 − 𝑧

Δ=
≤ exp −

𝜀 𝑓 𝐺" − 𝑓 𝐺
Δ=

≤ exp −
𝜀Δ=
Δ=

= exp 𝜀

By the triangle
inequality

CPSC 768

Laplace Mechanism Accuracy
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=, let 𝑴 𝑮 =
𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇

𝜺
, then 𝑷 𝑴 𝑮 − 𝒇 𝑮 ≤ 𝚫𝒇

𝜺
log 𝟏

𝜹
≥ 𝟏 − 𝜹

CPSC 768

Laplace Mechanism Accuracy
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=, let 𝑴 𝑮 =
𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇

𝜺
, then 𝑷 𝑴 𝑮 − 𝒇 𝑮 ≤ 𝚫𝒇

𝜺
log 𝟏

𝜹
≥ 𝟏 − 𝜹

• Proof: We can simplify 𝑷 𝑴 𝑮 − 𝒇 𝑮 ≤
𝚫𝒇
𝜺
log 𝟏

𝜹
=

𝑷 𝑳𝒂𝒑
𝚫𝒇
𝜺

≤
𝚫𝒇
𝜺
log 𝟏

𝜹
= 𝟏 − exp −ln 𝟏

𝜹
= 𝟏 − 𝜹.

By the Laplace distribution, we have that
 𝑃 𝑋 ≥ 𝑏𝑡 = exp −𝑡

CPSC 768

Laplace Mechanism vs. Geometric
Mechanism
• Symmetric geometric distribution PMF at 𝑥 ∈ 𝑍: ,

.0#
,.+#

⋅ 𝑒0) ⋅<

CPSC 768

Laplace Mechanism vs. Geometric
Mechanism
• Geometric mechanism allows:

• Integer values

CPSC 768

Laplace Mechanism vs. Geometric
Mechanism
• Geometric mechanism allows:

• Integer values
• Easier analysis for theoretical computer scientists; discrete

vs. continuous

CPSC 768

Laplace Mechanism vs. Geometric
Mechanism
• Geometric mechanism allows:

• Integer values
• Easier analysis for theoretical computer scientists; discrete

vs. continuous
• Geometric mechanism is utility-maximizing [Ghosh-

Roughgarden-Sundararajan ‘12]

CPSC 768

Laplace Mechanism vs. Geometric
Mechanism
• Geometric mechanism allows:

• Integer values
• Easier analysis for theoretical computer scientists; discrete

vs. continuous
• Geometric mechanism is utility-maximizing [Ghosh-

Roughgarden-Sundararajan ‘12]
• Statistical database and count queries
• For each fixed count query, there exists a geometric

mechanism 𝑀∗ such that each user derives as much
utility as a mechanism optimally tailored to that user

CPSC 768

Laplace Mechanism vs. Geometric
Mechanism
• Geometric mechanism allows:

• Integer values
• Easier analysis for theoretical computer scientists; discrete

vs. continuous
• Geometric mechanism is utility-maximizing [Ghosh-

Roughgarden-Sundararajan ‘12]
• Statistical database and count queries
• For each fixed count query, there exists a geometric

mechanism 𝑀∗ such that each user derives as much
utility as a mechanism optimally tailored to that user

Implementable on finite-bit computers!
[Balcer and Vadhan 2018]

CPSC 768

Next: Example of Geometric Mechanism that also
gets local privacy

CPSC 768

k-Core

3-Core

CPSC 768

3

k-Core Decomposition

Core Number of Node 𝒗:
Maximum Core Value of

a Core Containing 𝑣 3 3

3

CPSC 768

k-Core Decomposition

2-Core

1-Core

3

3 3

3

2

2 2

1Core Number of Node 𝒗:
Maximum Core Value of

a Core Containing 𝑣

CPSC 768

Approximate k-Core Decomposition

Approx. core number of
every node: 3

Approx. Core
Number : 2

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 	− 𝒅 ≤ J𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅

CPSC 768

Approximate k-Core Decomposition

Approx. core number of
every node: 3

Approx. Core
Number : 2

(3/2, 0)-
approx

(2, 0)-
approx

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 	− 𝒅 ≤ J𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅

CPSC 768

Approximate k-Core Decomposition

Approx. core number of
every node: 3

Approx. Core
Number : 2

(3/2, 0)-
approx

(2, 0)-
approx

2 + 𝜂, 𝑂 789$:
; 	-

approximations in this
paper

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 	− 𝒅 ≤ J𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅

CPSC 768

Level Data Structure and Core Numbers

Non-private sequential and parallel level
data structures for dynamic problem:

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15;
Henzinger-Neumann-Wiese ‘20;
Liu-Shi-Yu-Dhulipala-Shun ‘22]

CPSC 768

Level Data Structure and Core Numbers

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

4log%<=(𝑛)

CPSC 768

Level Data Structure and Core Numbers

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

1

2 4

1 4 2 2

4log%<=(𝑛)

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

CPSC 768

Level Data Structure and Core Numbers

4log%<=(𝑛)

Vertices which
moved remain

active
1 2 4

1
4 2 2

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

CPSC 768

Level Data Structure and Core Numbers

4log%<=(𝑛)

1 4 3 2 2

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

Vertices which
moved remain

active

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

CPSC 768

Level Data Structure and Core Numbers

4log%<=(𝑛)

4 3 2 2
1

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

Vertices which
moved remain

active

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

CPSC 768

Level Data Structure and Core Numbers

4log%<=(𝑛)

4 3 2 2

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

Vertices which
moved remain

active

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

CPSC 768

Level Data Structure and Core Numbers

4log%<=(𝑛)

4 3 2 2

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

Vertices which
moved remain

active

In this example:
𝜼 = 𝟎. 𝟏

Move up if induced
degree in active

vertices > 1 + 𝜂

Initially all vertices
are active

CPSC 768

Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏 Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏]

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

CPSC 768

Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕 Cutoff: 𝟏 + 𝜼 𝟖

…

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏]

Give approx core number 𝟐 ⋅ 𝟏 + 𝜼 𝒊

using largest cutoff where node is on the topmost level

CPSC 768

Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕 Cutoff: 𝟏 + 𝜼 𝟖

…

Approximation: 2 ⋅ 1 + 𝜂 A = 2 ⋅ 1.1A = 2 ⋅ 1.95 = 3.9

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏]

CPSC 768

Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕 Cutoff: 𝟏 + 𝜼 𝟖

…

Approximation: 2 ⋅ 1 + 𝜂 A = 2 ⋅ 1.1A = 2 ⋅ 1.95 = 3.9

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏]

CPSC 768

Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕

…

Approximation: 2 ⋅ 1 + 𝜂 A = 2 ⋅ 1.1A = 2 ⋅ 1.95 = 3.9

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏]

Top level means adjacent to many
neighbors of sufficiently high degree

Largest cutoff gives largest such degree

CPSC 768

Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕

Approximation: 𝟏

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏]

Top level means adjacent to many
neighbors of sufficiently high degree

Largest cutoff gives largest such degree

CPSC 768

𝜀-LEDP Core Numbers
Each active vertex draws i.i.d.

noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

𝜀-LEDP Core Numbers

𝑗 𝑏𝑘𝑖 𝑐𝑎 𝑑

Each active vertex draws i.i.d.
noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

𝜀-LEDP Core Numbers

𝑗 𝑏𝑘𝑖 𝑐𝑎 𝑑

1 + 1

In this example:
𝜼 = 𝟎. 𝟏

Each active vertex draws i.i.d.
noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 ,
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

𝜀-LEDP Core Numbers

𝑗 𝑏𝑘

𝑖

𝑐𝑎 𝑑

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 ,
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

1 + 1

Each active vertex draws i.i.d.
noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘𝑖 𝑐𝑎 𝑑

4 - 1

1 + 2
4 - 3

2 + 0

2 + 1

2 - 1

Each active vertex draws i.i.d.
noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

Redraw new noise
each time vertex
remains active

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 ,
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑2 + 3 2 + 0 2 + 1

Each active vertex draws i.i.d.
noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

Redraw new noise
each time vertex
remains active

Approx. as before
𝟐 𝟏 + 𝜼 𝒊 using

topmost level

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 ,
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑If 𝐝𝐞𝐠 𝒌 + 𝑵𝒌 > 𝟏 + 𝜼 ,
move up

Where 𝑁I ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Redraw new noise
each time vertex
remains active

Approx. as before
𝟐 𝟏 + 𝜼 𝒊 using

topmost level

Each active vertex draws i.i.d.
noise from symmetric
geometric distribution

Release and move
up degree + noise
in active vertices

> 1 + 𝜂

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

CPSC 768

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

𝜀-LEDP Core Numbers

Move up if induced
degree + noise in active

vertices > 1 + 𝜂

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑

Each active vertex
draws i.i.d. noise from
symmetric geometric

distribution

If 𝐝𝐞𝐠 𝒌 + 𝑵𝒌 > 𝟏 + 𝜼 ,
move up

Where 𝑁$ ∼ 𝐺𝑒𝑜𝑚 %
&'()!"# *

Redraw new noise each
time vertex remains

active and determines
whether move up

Approx. as before
𝟐 𝟏 + 𝜼 𝒊 where 𝑖

largest that vertex is on
the topmost level

Privacy and Approximation?

CPSC 768

Privacy Proof

• Can be implemented via local randomizers 𝑹

CPSC 768

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

CPSC 768

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

CPSC 768

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

CPSC 768

Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Global Sensitivity:
Δ+ = max

/01/23/'145678	,	:30	,#
𝑓 𝐺 − 𝑓 𝐺.

𝑓 𝒂, 𝐴 = |𝒂 ∩ 𝐴|

CPSC 768

Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Geometric Mechanism:
[Chan-Shi-Song ‘11; Balcer-Vadhan ‘18]

 𝑀 𝒂, 𝐴 = 𝑓 𝒂, 𝐴 + 	𝐺𝑒𝑜𝑚 !
C/

𝑴	is	𝜺-DP

CPSC 768

Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11;

Balcer-Vadhan ‘18]

CPSC 768

Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11;

Balcer-Vadhan ‘18]

• Same LR called for all vertices 𝟒𝐥𝐨𝐠𝟏<𝜼𝟐 𝒏 times

CPSC 768

Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11;

Balcer-Vadhan ‘18]

• Same LR called for all vertices 𝟒𝐥𝐨𝐠𝟏<𝜼𝟐 𝒏 times
• For each edge, called 𝟖𝐥𝐨𝐠𝟏<𝜼𝟐 𝒏 ; then, 𝟖𝐥𝐨𝐠𝟏"𝜼𝟐 𝒏 ⋅ 𝜺

𝟖𝐥𝐨𝐠𝟏$𝜼
𝟐 𝒏

= 𝜀 and so 𝜀-LEDP

CPSC 768

Approximation Proof Sketch
• With high probability, magnitude of each drawn noise is upper bounded by
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

CPSC 768

𝑗 𝑘 𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

CPSC 768

𝑗 𝑘 𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

• With high probability, magnitude of each drawn noise is upper bounded by
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

Approximation Proof Sketch

CPSC 768

𝑗 𝑘 𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

• Degree Lower Bound: If a vertex 𝑣 is on level 𝑖 > 0 at end of algorithm, then
it has at least 𝟏 + 𝜼 𝒊 −𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺 neighbors on levels ≥ 𝒊 − 𝟏

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

CPSC 768

𝑗

𝑘

𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

• Degree Lower Bound: If a vertex 𝑣 is on level 𝑖 > 0 at end of algorithm, then
it has at least 𝟏 + 𝜼 𝒊 −𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺 neighbors on levels ≥ 𝒊 − 𝟏

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

CPSC 768

Approximation Proof Sketch

𝑗

𝑘

𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

𝑗 𝑘 𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

Key: Largest cutoff
increases/decreases

by additive 𝑶 𝐥𝐨𝐠𝟑	𝒏
𝜺

CPSC 768

Approximation Proof Sketch

𝑗

𝑘

𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

𝑗 𝑘 𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

Key: Largest cutoff
increases/decreases

by additive 𝑶 𝐥𝐨𝐠𝟑	𝒏
𝜺

Recently improved
to 𝑂 KLM (

!

