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Announcements

• Check the latest announcement on Canvas:
• Scheduling Lectures survey: due Feb. 26
• Final Project Proposal: due Feb. 29, one page
• Final Project Examples

• Open problem sessions:
• Link for joining CPSC 768 Slack
• Open Problem Session food orders
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• Neighboring inputs differ in some information we’d like to hide 
Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺 
and 𝐺′ and all sets of possible outputs 𝑆:

Pr 𝒜 𝐺 ∈ 𝑆 ≤ 𝑒! ⋅ Pr 𝒜 𝐺" ∈ 𝑆 .
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Edge-Neighboring Graphs

• Edge-neighboring graphs: differ in one edge
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• Edge-neighboring graphs: differ in one edge
Differential Privacy [Dwork-McSherry-Nissim-Smith ‘06]

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺 
and 𝐺′ and all sets of possible outputs 𝑆:
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Answers
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https://www.npr.org/2021/04/09/98600582
0/after-data-breach-exposes-530-million-
facebook-says-it-will-not-notify-users

https://www.bleepingcomputer.com/news/s
ecurity/marriott-confirms-another-data-

breach-after-hotel-got-hacked/

https://www.malwarebytes.com/blog/news/
2021/06/second-colossal-linkedin-breach-in-

3-months-almost-all-users-affected

(Central Model of) Differential Privacy
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https://www.malwarebytes.com/blog/news/
2021/06/second-colossal-linkedin-breach-in-

3-months-almost-all-users-affected

Unrealistic trust 
in trusted curator
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Weaker Notion of Trust: Local Model
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Local Edge Differential Privacy (LEDP)

Local Randomizer
[Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

An 𝜺-local randomizer ℛ is an 𝜀-differentially private algorithm that 
takes as input an adjacency list 𝒂 and public information. 

ℛ
𝒂 = (B, C, E)B C

A

E
Public Information
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Local Edge Differential Privacy (LEDP)
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Untrusted Curator

Researchers, 
Government, 
Businesses, 

and
Malicious 

Adversaries

Users

Aggregate

QueriesAlgorithm proceeds in rounds 
in distributed graph using 

local randomizers

𝑢

𝑑

𝑏

𝑣
Round 2
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Number of Rounds 
of Communication



CPSC 768

Local Edge Differential Privacy (LEDP)
Local Edge Differential Privacy 

[DLRSSY ‘22 Adapted from Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith ‘11]

Let algorithm	𝒜	use (potentially different) local randomizers	ℛ%,, … , ℛ-, and 
ℛ%., … , ℛℓ.	on nodes 𝑢, 𝑣 with privacy parameters 𝜀%,, … , 𝜀-, and 𝜀%., … , 𝜀ℓ..

𝒜 is 𝜺-local edge differentially private (𝜺-LEDP) if for every edge 𝑢, 𝑣 ,	
𝜀%, +⋯+ 𝜀-, + 𝜀%.⋯+ 𝜀ℓ. ≤ 𝜀.

ℛ#$ , 𝜀#$
𝑢

𝑣 ⋯ ℛℓ
$ , 𝜀ℓ$

ℛ#& , 𝜀#& ⋯ ℛ'& , 𝜀'&

𝜀!" +⋯+ 𝜀#" + 𝜀!$⋯+ 𝜀ℓ$ ≤ 𝜀
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• Local edge differentially private algorithms:
• Relatively new direction
• k-Core Decomposition, Densest Subgraphs, Low Out-degree 

Ordering: [Dhulipala-Liu-Raskhodnikova-Shi-Shun-Yu ‘22, Dinitz-
Kale-Lattanzi-Vassilvitskii ‘23, Dhulipala-Li-Liu ‘23]

• Triangle and other subgraph counting: [Imola-Murakami-
Chaudhuri ‘21, ’22; Eden-Liu-Raskhodnikova-Smith ‘23]

• Other graph problems in empirical settings in “decentralized” 
privacy models [Sun-Xiao-Khalil-Yang-Qin-Wang-Yu ‘19; Qin-Yu-Yang-
Khalil-Xiao-Ren ‘17; Gao-Li-Chen-Zou ‘18; Ye-Hu-Au-Meng-Xiao ‘20]

Related Work
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Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋( ∈ 0, 1 for each individual 
(i.e. has COVID) 
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Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋( ∈ 0, 1 for each individual 
(i.e. has COVID) 

• Randomly report the same bit or flipped bit:

• 𝑌) = 8 𝑋) w. p.½ + 𝜀
1 − 𝑋) w. p.½ − 𝜀
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• 𝑌) = 8 𝑋) w. p.½ + 𝜀
1 − 𝑋) w. p.½ − 𝜀
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error but locally private
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Randomized Response

• Given an input set of bits 𝑋#, … , 𝑋( ∈ 0, 1 for each individual 
(i.e. has COVID) 

• Randomly report the same bit or flipped bit:

• 𝑌) = 8 𝑋) w. p.½ + 𝜀
1 − 𝑋) w. p.½ − 𝜀

• Sum of 𝑌) bits: 𝑂 (
!

error but locally private

• Geometric mechanism: 𝑂 #
!

error but not locally private 
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Locally Private Triangle Counting
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Locally Private Triangle Counting

Central DP vs. LEDP
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Locally Private Triangle Counting

Central DP vs. LEDP

Triangle 
Counting

DP Upper Bound

𝑶 𝒏
𝜺

 additive error
(trivial)

LEDP Lower Bound

𝛀 𝒏𝟑/𝟐

𝜺  additive error
(multiple rounds)

𝛀 𝒏𝟐

𝜺  additive error
(one round)

[Eden-Liu-Raskhodnikova-Smith ICALP ‘23]
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
Each node holds 

their own adjacency 
list as private info
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),( where 𝑋),' = 1 − 𝑎),' with 

probability #
,!+#

and 𝑎),' otherwise
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),( where 𝑋),' = 1 − 𝑎),' with 

probability #
,!+#

and 𝑎),' otherwise Releasing noisy upper 
triangular matrix

1 𝟎 𝟏
0 1 𝟎
0 0 1
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),( where 𝑋),' = 1 − 𝑎),' with 
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and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),( where 𝑋),' = 1 − 𝑎),' with 

probability #
,!+#

and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←

.",$⋅ ,!+# 0#
,!0#

• For all 𝑖, 𝑗, 𝑘 ∈ (
1 , set 𝑍),',2 ← 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2

Normalized 𝒀𝒊,𝒋 so 
that 𝑬 𝒁𝒊,𝒋,𝒌 = 𝟏 if 

triangle exists 
and	𝟎	otherwise 
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
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1 , set 𝑍),',2 ← 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2

• Return M𝑻 ← ∑
𝒊,𝒋,𝒌 ∈ %

&
𝒁𝒊,𝒋,𝒌
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One-Round Locally Private Triangle Counting 
[Eden-Liu-Raskhodnikova-Smith ‘23]
• Input: Graph 𝐺 = ( 𝑛 , 𝐸) represented by 𝑛 × 𝑛 adjacency 

matrix 𝐴 with entries 𝑎)' , 𝜀 > 0
• Output: Approximate number of triangles in 𝐺

• for 𝑖 = 1,… , 𝑛:
• Release 𝑋),)+#, … , 𝑋),( where 𝑋),' = 1 − 𝑎),' with 

probability #
,!+#

and 𝑎),' otherwise

• For all 𝑖, 𝑗 ∈ (
- , set 𝑌),' ←

.",$⋅ ,!+# 0#
,!0#

• For all 𝑖, 𝑗, 𝑘 ∈ (
1 , set 𝑍),',2 ← 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2

• Return M𝑻 ← ∑
𝒊,𝒋,𝒌 ∈ %

&
𝒁𝒊,𝒋,𝒌

Therefore, 𝑬 ?𝑻 = 𝑻 
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• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}
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Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles 
in the input graph

• Proof: 
• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!
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; otherwise 𝐸 𝑋),' = #

,!+#
, why?
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Analysis of the Expectation and Variance

• Lemma: Returns an unbiased estimate of the number of triangles 
in the input graph

• Proof: 
• 𝑋),' is indicator variable for presence of noisy edge {𝑖, 𝑗}
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Analysis of the Expectation and Variance

• Proof: 
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Analysis of the Expectation and Variance

• Proof: 
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!
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Analysis of the Expectation and Variance

• Proof: 
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Analysis of the Expectation and Variance

• Proof: 
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

• If 𝑖, 𝑗 ∈ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
'!

'!() ⋅ ,!+# 0#

,!0#
= ,!0#

,!0#
= 1

• If 𝑖, 𝑗 ∉ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
)

'!() ⋅ ,!+# 0#

,!0#
= 0

• Finally, 𝐸 𝑍),',2 = 𝐸 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2 = 𝐸 𝑌),'] ⋅ 𝐸 𝑌',2 ⋅ 𝐸[𝑌),2 = 1),',2



CPSC 768

Analysis of the Expectation and Variance

• Proof: 
• If 𝑖, 𝑗 ∈ 𝐸, then 𝐸 𝑋),' = ,!

,!+#
; otherwise 𝐸 𝑋),' = #

,!+#

• Then, 𝐸 𝑌),' = 𝐸
.",$⋅ ,!+# 0#

,!0#
=

7 .",$ ⋅ ,!+# 0#
,!0#

• If 𝑖, 𝑗 ∈ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
'!

'!() ⋅ ,!+# 0#

,!0#
= ,!0#

,!0#
= 1

• If 𝑖, 𝑗 ∉ 𝐸, then 7 .",$ ⋅ ,!+# 0#
,!0#

=
)

'!() ⋅ ,!+# 0#

,!0#
= 0

• Finally, 𝐸 𝑍),',2 = 𝐸 𝑌),' ⋅ 𝑌',2 ⋅ 𝑌),2 = 𝐸 𝑌),'] ⋅ 𝐸 𝑌',2 ⋅ 𝐸[𝑌),2 = 1),',2
• Linearity of expectations gives 𝐸 V𝑇 = 𝐸 ∑)'2∈ ( & 𝑍),',2 = 𝑇
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' ?
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# + Bernoulli variable
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# +

• Var 𝑌),' = Var .",$⋅ ,!+# 0#
,!0#

?
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# +

• Var 𝑌),' = Var .",$⋅ ,!+# 0#
,!0#

= #
,!0# + ⋅ Var 𝑋),' ⋅ 𝑒! + 1 − 1 =

,!+# +

,!0# + ⋅ Var 𝑋),' = ,!

,!0# +
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = 𝑝 1 − 𝑝 = ,!

,!+#
⋅ #
,!+#

= ,!

,!+# +

• Var 𝑌),' = Var .",$⋅ ,!+# 0#
,!0#

= #
,!0# + ⋅ Var 𝑋),' ⋅ 𝑒! + 1 − 1 =

,!+# +

,!0# + ⋅ Var 𝑋),' = ,!

,!0# +

• Var 𝑍),',2 = 𝐸 𝑍),',2- − 𝐸 𝑍),',2
-
= 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2-
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# +

• Var 𝑍),',2 = 𝐸 𝑍),',2- − 𝐸 𝑍),',2
-
= 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2-

• 𝐸 𝑌),'- = Var 𝑌),' + 𝐸 𝑌),'
-
= ,!

,!0# + = Θ #
!+ 𝒆𝜺 ∈ 𝟏, 𝟑  for 

𝜺 ∈ 𝟎, 𝟏
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# +

• Var 𝑍),',2 = 𝐸 𝑍),',2- − 𝐸 𝑍),',2
-
= 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2-

• 𝐸 𝑌),'- = Var 𝑌),' + 𝐸 𝑌),'
-
= ,!

,!0# + = Θ #
!+

• 𝐸 𝑌),'- ⋅ 𝐸 𝑌',2- ⋅ 𝐸 𝑌),2- − 1),',2- = Θ #
!,
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = ∑
),',2 ∈ %

&
Var 𝑍),',2
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

Not true Var ∑
',#,) ∈ !

"
𝑍',#,) = ∑

',#,) ∈ !
"
Var 𝑍',#,) , why?
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

Not true Var ∑
',#,) ∈ !

"
𝑍',#,) = ∑

',#,) ∈ !
"
Var 𝑍',#,) , why?

Share 𝒀𝒊,𝒋 variables; 
triangles share edges!
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Are we done?

Not true Var ∑
',#,) ∈ !

"
𝑍',#,) = ∑

',#,) ∈ !
"
Var 𝑍',#,) , why?

Share 𝒀𝒊,𝒋 variables; 
triangles share edges!
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Consider change of variables 𝑈),',2 = 𝑍),',2 − 1),',2
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var ∑
),',2 ∈ %

&
𝑍),',2

• Consider change of variables 𝑈),',2 = 𝑍),',2 − 1),',2

𝑬 𝑼𝒊,𝒋,𝒌 = 𝟎 and 𝐕𝐚𝐫 𝑼𝒊,𝒋,𝒌 = 𝐕𝐚𝐫 𝒁𝒊,𝒋,𝒌  
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges
Non-zero covariance: share an edge; how many?
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) = Var ∑

),',2 ∈ %
&
𝑈),',2

• How do we simplify, what do we observe?

Covariance is 0 if share at most one vertex, no edges
Non-zero covariance: share an edge; number of 4-cycles
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) =

Var ∑
),',2 ∈ %

&
𝑈),',2 ≤ ∑

),',2 ∈ %
&
Θ #

!,

+ _
),',2,9 ∈8*

𝐸 𝑈),',2 ⋅ 𝑈',2,9
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Analysis of the Expectation and Variance
• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*

!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) =

Var ∑
),',2 ∈ %

&
𝑈),',2 ≤ ∑

),',2 ∈ %
&
Θ #

!,
+

_
),',2,9 ∈8*

𝐸 𝑈),',2 ⋅ 𝑈',2,9 ≤ _
),',2,9 ∈8*

𝐸 𝑌),' ⋅ 𝑌',2- ⋅ 𝑌),2 ⋅ 𝑌9,' ⋅ 𝑌9,2

≤ _
),',2,9 ∈8*

𝐸 𝑌',2-
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Analysis of the Expectation and Variance

• Lemma: Returns an approximate M𝑻 where Var V𝑇 = Θ 8*
!+
+ (&

!,

• Proof: 
• Var 𝑋),' = ,!

,!+# +; Var 𝑌),' = ,!

,!0# + ; Var 𝑍),',2 = Θ #
!,

• Var V𝑇 = Var V𝑇 − 𝑇 = Var ∑
),',2 ∈ %

&
(𝑍),',2−1),',2) =

Var ∑
),',2 ∈ %

&
𝑈),',2 ≤ ∑

),',2 ∈ %
&
Θ #

!,

+ _
),',2,9 ∈8*

𝐸 𝑈),',2 ⋅ 𝑈',2,9 ≤ Θ
𝑛1

𝜀:
+ _

),',2,9 ∈8*

𝐸 𝑌',2- = Θ
𝑛1

𝜀:
+
𝐶;
𝜀-
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On Wednesday, more DP mechanisms!

• Laplace mechanism 
• (Geometric mechanism—already discussed)
• Exponential mechanism
• Gaussian mechanism
• Privacy amplification via subsampling
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CPSC 768: 
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 12: Differential Privacy Mechanisms
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Announcements

• Check the latest announcement on Canvas:
• Scheduling Lectures survey: due Feb. 26
• Final Project Proposal: due Feb. 29, one page (email to 

me)
• Final Project Examples

• Open problem sessions:
• Link for joining CPSC 768 Slack
• Open Problem Session food orders
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Global Sensitivity

• Intuition: Measure of how different the output of a function is 
on neighboring input
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Global Sensitivity

• Intuition: Measure of how different the output of a function is 
on neighboring input

Definition (Global Sensitivity): The global sensitivity of a 
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.  

where 𝐺 and 𝐺′ are edge-neighboring graphs.
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Global Sensitivity Examples

• What is the global sensitivity of the following problems (assuming 
for each we have a function that gives the exact solution):

• Triangle counting
• Maximum matching
• Average Degree

Definition (Global Sensitivity): The global sensitivity of a 
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.  

where 𝐺 and 𝐺′ are edge-neighboring graphs.
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Global Sensitivity Examples

• What is the global sensitivity of the following problems (assuming 
for each we have a function that gives the exact solution):

• Triangle counting
• Maximum matching
• Average Degree

Definition (Global Sensitivity): The global sensitivity of a 
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.  

where 𝐺 and 𝐺′ are edge-neighboring graphs.

𝑛	
𝐺 𝐺′
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Global Sensitivity Examples

• What is the global sensitivity of the following problems (assuming 
for each we have a function that gives the exact solution):

• Triangle counting: 𝒏
• Maximum matching: 𝟏
• Average Degree: 𝟐/𝒏

Definition (Global Sensitivity): The global sensitivity of a 
function: 𝑓: 𝐺 → 𝑅 is defined as:
Δ+ = max

,∼,#
𝑓 𝐺 − 𝑓 𝐺.  

where 𝐺 and 𝐺′ are edge-neighboring graphs.



CPSC 768

Laplace Distribution
• The PDF of 𝑋 ∈ 𝑅 is: Lap 𝑏 = #

-<
⋅ exp − .

<
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Laplace Distribution
• The PDF of 𝑋 ∈ 𝑅 is: Lap 𝑏 = #

-<
⋅ exp − .

<
Larger 𝑏 

heavier tails
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Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

Δ+
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Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′
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Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

𝑒!-factor
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Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Intuition: Solution for 𝐺 and 𝐺′ differ by Δ=

Probability

𝑓 ⋅
𝑓 𝐺 𝑓 𝐺′

𝑒!-factor

Larger Δ=  means 
need a flatter curve
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Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=,

𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇
𝜺

is 𝜀-differentially private.

• Proof: Consider neighboring graphs 𝐺 and 𝐺" and function 
𝑓: 𝐺 → 𝑅. Let 𝒑 and 𝒑′ denote the probability density functions of 
𝒇 𝑮 + 𝑳𝒂𝒑

𝚫𝒇
𝜺

and 𝒇 𝑮′ + 𝑳𝒂𝒑 𝚫𝒇
𝜺

, respectively. Then, for an 
arbitrary point 𝑧 ∈ 𝑅:

𝑝 𝑧
𝑝" 𝑧

=
exp − 𝜀 𝑓 𝐺 − 𝑧

Δ=

exp − 𝜀 𝑓 𝐺" − 𝑧
Δ=
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Laplace Mechanism
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=, 𝒇 𝑮 +
𝑳𝒂𝒑

𝚫𝒇
𝜺

is 𝜀-differentially private.
• Proof: 

= exp −
𝜀 𝑓 𝐺" − 𝑧 − 𝑓 𝐺 − 𝑧

Δ=
≤ exp −

𝜀 𝑓 𝐺" − 𝑓 𝐺
Δ=

≤ exp −
𝜀Δ=
Δ=

= exp 𝜀

By the triangle 
inequality
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Laplace Mechanism Accuracy
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=, let 𝑴 𝑮 =
𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇

𝜺
, then 𝑷 𝑴 𝑮 − 𝒇 𝑮 ≤ 𝚫𝒇

𝜺
log 𝟏

𝜹
≥ 𝟏 − 𝜹
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Laplace Mechanism Accuracy
• Lemma: Given a function 𝑓: 𝐺 → 𝑅 with sensitivity Δ=, let 𝑴 𝑮 =
𝒇 𝑮 + 𝑳𝒂𝒑 𝚫𝒇

𝜺
, then 𝑷 𝑴 𝑮 − 𝒇 𝑮 ≤ 𝚫𝒇

𝜺
log 𝟏

𝜹
≥ 𝟏 − 𝜹

• Proof: We can simplify 𝑷 𝑴 𝑮 − 𝒇 𝑮 ≤
𝚫𝒇
𝜺
log 𝟏

𝜹
=

𝑷 𝑳𝒂𝒑
𝚫𝒇
𝜺

≤
𝚫𝒇
𝜺
log 𝟏

𝜹
= 𝟏 − exp −ln 𝟏

𝜹
= 𝟏 − 𝜹.

By the Laplace distribution, we have that
 𝑃 𝑋 ≥ 𝑏𝑡 = exp −𝑡  
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Laplace Mechanism vs. Geometric 
Mechanism
• Symmetric geometric distribution PMF at 𝑥 ∈ 𝑍: ,

.0#
,.+#

⋅ 𝑒0 ) ⋅<
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Laplace Mechanism vs. Geometric 
Mechanism
• Geometric mechanism allows: 

• Integer values
• Easier analysis for theoretical computer scientists; discrete 

vs. continuous
• Geometric mechanism is utility-maximizing [Ghosh-

Roughgarden-Sundararajan ‘12]
• Statistical database and count queries
• For each fixed count query, there exists a geometric 

mechanism 𝑀∗ such that each user derives as much 
utility as a mechanism optimally tailored to that user

Implementable on finite-bit computers! 
[Balcer and Vadhan 2018]
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Next: Example of Geometric Mechanism that also 
gets local privacy
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3-Core
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3

k-Core Decomposition

Core Number of Node 𝒗:
Maximum Core Value of 

a Core Containing 𝑣 3 3

3
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k-Core Decomposition

2-Core

1-Core

3

3 3

3

2

2 2

1Core Number of Node 𝒗:
Maximum Core Value of 

a Core Containing 𝑣
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Approximate k-Core Decomposition

Approx. core number of 
every node: 3

Approx. Core 
Number : 2

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 	− 𝒅 ≤ J𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅
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Approx. core number of 
every node: 3

Approx. Core 
Number : 2

(3/2, 0)-
approx

(2, 0)-
approx
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Approximate k-Core Decomposition

Approx. core number of 
every node: 3

Approx. Core 
Number : 2

(3/2, 0)-
approx

(2, 0)-
approx

2 + 𝜂, 𝑂 789$ :
; 	-

approximations in this 
paper

(𝒄, 𝒅)-Approx. Core Number:
𝐜𝐨𝐫𝐞 𝒗 	− 𝒅 ≤ J𝐜𝐨𝐫𝐞 𝒗 ≤ 𝒄 ⋅ 𝐜𝐨𝐫𝐞 𝒗 + 𝒅
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Level Data Structure and Core Numbers

Non-private sequential and parallel level 
data structures for dynamic problem:

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15; 
Henzinger-Neumann-Wiese ‘20; 
Liu-Shi-Yu-Dhulipala-Shun ‘22]
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Level Data Structure and Core Numbers

In this example: 
𝜼 = 𝟎. 𝟏

Move up if induced 
degree in active 

vertices > 1 + 𝜂   

Initially all vertices 
are active

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]

4log%<=(𝑛)
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4log%<=(𝑛)
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1 2 4

1
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moved remain 
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Move up if induced 
degree in active 
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Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏 Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏 ] 

[Bhattacharya-Henzinger-Nanongkai-Tsourakakis ‘15, Henzinger-Neumann-Wiese ‘20, Liu-Shi-Yu-Dhulipala-Shun ‘22]
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Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕 Cutoff: 𝟏 + 𝜼 𝟖

…

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏 ] 

Give approx core number 𝟐 ⋅ 𝟏 + 𝜼 𝒊

using largest cutoff where node is on the topmost level
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Non-Private Core Number Approximation
𝜼 = 𝟎. 𝟏

Cutoff: 𝟏 + 𝜼

…

Cutoff: 𝟏 + 𝜼 𝟕

Approximation: 𝟏

Set cutoffs 𝟏 + 𝜼 𝒊 for all 𝒊 ∈ [𝐥𝐨𝐠𝟏<𝜼 𝒏 ] 

Top level means adjacent to many 
neighbors of sufficiently high degree

Largest cutoff gives largest such degree
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𝜀-LEDP Core Numbers
Each active vertex draws i.i.d. 

noise from symmetric 
geometric distribution

Release and move 
up degree + noise 
in active vertices 

> 1 + 𝜂   

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F
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𝜀-LEDP Core Numbers

𝑗 𝑏𝑘𝑖 𝑐𝑎 𝑑

1 + 1

In this example: 
𝜼 = 𝟎. 𝟏

Each active vertex draws i.i.d. 
noise from symmetric 
geometric distribution

Release and move 
up degree + noise 
in active vertices 

> 1 + 𝜂   

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F
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𝜀-LEDP Core Numbers

𝑗 𝑏𝑘

𝑖

𝑐𝑎 𝑑

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

1 + 1

Each active vertex draws i.i.d. 
noise from symmetric 
geometric distribution

Release and move 
up degree + noise 
in active vertices 

> 1 + 𝜂   

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F
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𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘𝑖 𝑐𝑎 𝑑

4 - 1

1 + 2
4 - 3

2 + 0

2 + 1

2 - 1

Each active vertex draws i.i.d. 
noise from symmetric 
geometric distribution

Release and move 
up degree + noise 
in active vertices 

> 1 + 𝜂   

Redraw new noise 
each time vertex 
remains active

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F
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𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑2 + 3 2 + 0 2 + 1

Each active vertex draws i.i.d. 
noise from symmetric 
geometric distribution

Release and move 
up degree + noise 
in active vertices 

> 1 + 𝜂   

Redraw new noise 
each time vertex 
remains active

Approx. as before 
𝟐 𝟏 + 𝜼 𝒊 using 

topmost level

If 𝐝𝐞𝐠 𝒊 + 𝑵𝒊 > 𝟏 + 𝜼 , 
move up

Where 𝑁G ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F
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𝜀-LEDP Core Numbers

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑If 𝐝𝐞𝐠 𝒌 + 𝑵𝒌 > 𝟏 + 𝜼 , 
move up

Where 𝑁I ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Redraw new noise 
each time vertex 
remains active

Approx. as before 
𝟐 𝟏 + 𝜼 𝒊 using 

topmost level

Each active vertex draws i.i.d. 
noise from symmetric 
geometric distribution

Release and move 
up degree + noise 
in active vertices 

> 1 + 𝜂   

Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F
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Distribution 𝑮𝒆𝒐𝒎 𝒃

PMF: B
%C%
B%<%

⋅ 𝑒C D ⋅F

𝜀-LEDP Core Numbers

Move up if induced 
degree + noise in active 

vertices > 1 + 𝜂   

𝑗 𝑏

𝑘

𝑖

𝑐

𝑎

𝑑

Each active vertex 
draws i.i.d. noise from 
symmetric geometric 

distribution

If 𝐝𝐞𝐠 𝒌 + 𝑵𝒌 > 𝟏 + 𝜼 , 
move up

Where 𝑁$ ∼ 𝐺𝑒𝑜𝑚 %
&'()!"# *

Redraw new noise each 
time vertex remains 

active and determines 
whether move up 

Approx. as before 
𝟐 𝟏 + 𝜼 𝒊 where 𝑖 

largest that vertex is on 
the topmost level

Privacy and Approximation?
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• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨
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• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Global Sensitivity: 
Δ+ = max

/01/23/'145678	,	:30	,#
𝑓 𝐺 − 𝑓 𝐺.

𝑓 𝒂, 𝐴 = |𝒂 ∩ 𝐴|
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

Geometric Mechanism: 
[Chan-Shi-Song ‘11; Balcer-Vadhan ‘18]

 𝑀 𝒂, 𝐴 = 𝑓 𝒂, 𝐴 + 	𝐺𝑒𝑜𝑚 !
C/

𝑴	is	𝜺-DP
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
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H789+,-. :

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11; 

Balcer-Vadhan ‘18]
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Sensitivity of 1

Privacy Proof

• Can be implemented via local randomizers 𝑹
• 𝑅 takes as input 𝒂 (adjacency list) and public set of active vertices 𝑨

• 𝑅 computes size of intersection 𝒂 ∩ 𝑨

• Then, add symmetric geometric noise 𝑋 ∼ 𝐺𝑒𝑜𝑚 ;
H789+,-. :

• 𝑹 is 𝜺
𝟖𝐥𝐨𝐠𝟏,𝜼

𝟐 𝒏
- LR by privacy of Geometric Mechanism [Chan-Shi-Song ‘11; 

Balcer-Vadhan ‘18]

• Same LR called for all vertices 𝟒𝐥𝐨𝐠𝟏<𝜼𝟐 𝒏 times
• For each edge, called 𝟖𝐥𝐨𝐠𝟏<𝜼𝟐 𝒏 ; then, 𝟖𝐥𝐨𝐠𝟏"𝜼𝟐 𝒏 ⋅ 𝜺

𝟖𝐥𝐨𝐠𝟏$𝜼
𝟐 𝒏

= 𝜀 and so 𝜀-LEDP
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Approximation Proof Sketch
• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
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𝑗 𝑘 𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

Approximation Proof Sketch

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺
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𝑗 𝑘 𝑐 𝑑

𝑶
𝐥𝐨𝐠𝟑	𝒏
𝜺

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

Approximation Proof Sketch
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𝑗 𝑘 𝑐 𝑑

• With high probability, magnitude of each drawn noise is upper bounded by 
𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺

• Degree Upper Bound: If a vertex 𝑣 is on level 𝑖 < 4log%<=(𝑛) at end of 
algorithm, then it has at most 𝟏 + 𝜼 𝒊 +𝑶 𝐥𝐨𝐠𝟑 𝒏

𝜺
neighbors on levels ≥ 𝒊

• Degree Lower Bound: If a vertex 𝑣 is on level 𝑖 > 0 at end of algorithm, then 
it has at least 𝟏 + 𝜼 𝒊 −𝑶 𝐥𝐨𝐠𝟑 𝒏
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