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“Practical” Algorithms

Provably efficient algorithms

Models that consider modern challenges and 
computing environments

Goal: 
Data structures with best theoretical guarantees
Implementable in practice 
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Key Modern Challenge: Massive Datasets

MASSIVE graph data sets

~ 27 billion comments ~ 6 trillion edges

~ 128 billion hyperlinks

Web Data Commons 
Hyperlink Graph

~ 2 billion follows

ClueWeb

~ 10 billion edges

~ 300 million neurons



CPSC 768

Main Takeaway of the Class

• This class is focused on research

• Use the techniques you learn outside of this class

• Start conducting research in these topics and more

• Exposure to practice problems and open problems

• Complete a final project
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Logistics

• Course website: https://quanquancliu.com/cpsc768
• Everything important!
• Syllabus
• Recommended topics 
• Class schedule
• Links to a bunch of papers
• Class notes (posted as a batch for the week on Sunday)

• Open problem session scheduling + survey: 
https://forms.gle/CsKnH5DvuVu5XKXQA

https://quanquancliu.com/cpsc768
https://forms.gle/CsKnH5DvuVu5XKXQA
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Format and Workload

• Two class presentations on subjects of their choice related to 
the topics of the course. 50% of grade.

• Finalize dates and topics for presentations before April 1: 
due Feb. 5.

• Finalize dates and topics for presentations on and after April 
1: due Feb. 26.

• One final project (individual or with partner). 50% of grade.
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Format and Workload

• One final project (individual or with partner). 50% of grade.
• Project proposal (1 page): due Feb. 26.
• Progress report (2-3 pages): due March 27.
• In-class presentation: last two weeks of class.
• Final report (at least 8 pages, less than 20): April 24
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Final Project Details (in the context of 
SODA/SOSA/ALENEX)
• Reading project (e.g. SOSA paper):

• Read 2-3 papers on the same project and survey on key ideas
• Service to the community for hard to read papers!

• Theory project (e.g. SODA paper): 
• Make an improvement over previous result
• Solve an open problem

• Implementation project (e.g. ALENEX paper):
• Algorithm engineering implementation of an algorithm
• Give a more implementable solution with same or better theory 

guarantees
• More details given in the syllabus
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A Brief Overview of Some Models 
Covered in This Class
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A Key Focus on Graphs

Static or Dynamic
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A Brief Overview of Models We’ll Cover

How updates are given:
• In batches of multiple 

updates
• As a stream of updates

How to represent graph:
• On one machine
• Distributed across many 

machines

What resources to process:
• Multiple cores
• Communication network 

over machines
Adversarial models:

• Adaptive/oblivious
• Privacy violating
• Central/Local
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How to Represent the Graph

• On one machine
• Distributed across many machines
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What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

Cores: parallel 
processing

Shared-memory: read 
and write from same 

memory

• Work: 
• Total number of operations

• Depth/Span: 
• Longest chain of sequential 

dependencies in algorithm

Shared-memory work-depth model
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What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

𝑆 𝑆 𝑆

• S space per machine
Total Space: 𝑴 ⋅ 𝑺

Massively Parallel Computation (MPC) Model

Complexity measures:
• Total Space
• Space Per Machine
• Rounds of 

communication
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𝐺$ 𝐺$%&
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How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
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Input Stream

𝑒

𝑓
ℎ

Small Memory

Complexity measures:
• Memory size
• Number of passes
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Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs 

(sometimes internal random bits)

🤣

🙂

😳😊

😃😀

Graph 𝐺 Trusted Curator
Researchers, 
Government, 
Businesses, 

and
Malicious 

Adversaries

Users

Answers

Queries

Differential Privacy: Central Model (DP)
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Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs 

(sometimes internal random bits)

Differential Privacy

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺 
and 𝐺′ and all sets of possible outputs 𝑆:

Pr 𝒜 𝐺 ∈ 𝑆 ≤ 𝑒' ⋅ Pr 𝒜 𝐺( ∈ 𝑆 .

Neighboring inputs differ in some information we’d like to hide 

Differential Privacy: Central Model (DP)
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Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs 

(sometimes internal random bits)

Neighboring Inputs

Edge-neighboring graphs: differ in one edge

🤣

🙂

😳
😊

😃😀

🤣

🙂

😳
😊

😃😀
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Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs 

(sometimes internal random bits)

Local Randomizer

An 𝜺-local randomizer ℛ is an 𝜀-differentially private algorithm that takes as input an 
adjacency list 𝒂 and public information. 

ℛ
𝒂 = (B, C, E)B C

A

E
Public Information

Differential Privacy: Local Model (LDP)
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Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC} 

Distributed + Differential Privacy = Local Model

Dynamic + Differential Privacy = Continual Release

Incremental/Fully Dynamic + Streaming

What problems can we study where solutions can be 
implemented in many models without many changes?

Each model is great for a 
different real-world system! 

But there are many!


