
CPSC 768

CPSC 768:
Scalable and Private Graph Algorithms

Quanquan C. Liu
quanquan.liu@yale.edu

Lecture 1: Intro

CPSC 768

“Practical” Algorithms

Heuristics

CPSC 768

“Practical” Algorithms

Heuristics Engineering

CPSC 768

“Practical” Algorithms

Heuristics Engineering

Math Tools

CPSC 768

“Practical” Algorithms

Heuristics Engineering

Math ToolsTools from
ML

CPSC 768

“Practical” Algorithms

Heuristics Engineering

Math ToolsTools from
ML

CPSC 768

“Practical” Algorithms

Provably efficient algorithms

Models that consider modern challenges and
computing environments

Goal:
Data structures with best theoretical guarantees
Implementable in practice

CPSC 768

Key Modern Challenge: Massive Datasets

MASSIVE graph data sets

~ 27 billion comments ~ 6 trillion edges

~ 128 billion hyperlinks

Web Data Commons
Hyperlink Graph

~ 2 billion follows

ClueWeb

~ 10 billion edges

~ 300 million neurons

CPSC 768

Main Takeaway of the Class

• This class is focused on research

• Use the techniques you learn outside of this class

• Start conducting research in these topics and more

• Exposure to practice problems and open problems

• Complete a final project

CPSC 768

Logistics

• Course website: https://quanquancliu.com/cpsc768
• Everything important!
• Syllabus
• Recommended topics
• Class schedule
• Links to a bunch of papers
• Class notes (posted as a batch for the week on Sunday)

• Open problem session scheduling + survey:
https://forms.gle/CsKnH5DvuVu5XKXQA

https://quanquancliu.com/cpsc768
https://forms.gle/CsKnH5DvuVu5XKXQA

CPSC 768

Format and Workload

• Two class presentations on subjects of their choice related to
the topics of the course. 50% of grade.

• Finalize dates and topics for presentations before April 1:
due Feb. 5.

• Finalize dates and topics for presentations on and after April
1: due Feb. 26.

• One final project (individual or with partner). 50% of grade.

CPSC 768

Format and Workload

• One final project (individual or with partner). 50% of grade.
• Project proposal (1 page): due Feb. 26.
• Progress report (2-3 pages): due March 27.
• In-class presentation: last two weeks of class.
• Final report (at least 8 pages, less than 20): April 24

CPSC 768

Final Project Details (in the context of
SODA/SOSA/ALENEX)
• Reading project (e.g. SOSA paper):

• Read 2-3 papers on the same project and survey on key ideas
• Service to the community for hard to read papers!

• Theory project (e.g. SODA paper):
• Make an improvement over previous result
• Solve an open problem

• Implementation project (e.g. ALENEX paper):
• Algorithm engineering implementation of an algorithm
• Give a more implementable solution with same or better theory

guarantees
• More details given in the syllabus

CPSC 768

Final Project Details (in the context of
SODA/SOSA/ALENEX)
• Reading project (e.g. SOSA paper):

• Read 2-3 papers on the same project and survey on key ideas
• Service to the community for hard to read papers!

• Theory project (e.g. SODA paper):
• Make an improvement over previous result
• Solve an open problem

• Implementation project (e.g. ALENEX paper):
• Algorithm engineering implementation of an algorithm
• Give a more implementable solution with same or better theory

guarantees
• More details given in the syllabus

CPSC 768

Final Project Details (in the context of
SODA/SOSA/ALENEX)
• Reading project (e.g. SOSA paper):

• Read 2-3 papers on the same project and survey on key ideas
• Service to the community for hard to read papers!

• Theory project (e.g. SODA paper):
• Make an improvement over previous result
• Solve an open problem

• Implementation project (e.g. ALENEX paper):
• Algorithm engineering implementation of an algorithm
• Give a more implementable solution with same or better theory

guarantees
• More details given in the syllabus

CPSC 768

A Brief Overview of Some Models
Covered in This Class

CPSC 768

A Key Focus on Graphs

Static or Dynamic

CPSC 768

A Brief Overview of Models We’ll Cover

How to represent graph:
• On one machine
• Distributed across many

machines

CPSC 768

A Brief Overview of Models We’ll Cover

How to represent graph:
• On one machine
• Distributed across many

machines

What resources to process:
• Multiple cores
• Communication network

over machines

CPSC 768

A Brief Overview of Models We’ll Cover

How updates are given:
• In batches of multiple

updates
• As a stream of updates

How to represent graph:
• On one machine
• Distributed across many

machines

What resources to process:
• Multiple cores
• Communication network

over machines

CPSC 768

A Brief Overview of Models We’ll Cover

How updates are given:
• In batches of multiple

updates
• As a stream of updates

How to represent graph:
• On one machine
• Distributed across many

machines

What resources to process:
• Multiple cores
• Communication network

over machines
Adversarial models:

• Adaptive/oblivious
• Privacy violating
• Central/Local

CPSC 768

How to Represent the Graph

• On one machine
• Distributed across many machines

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

Cores: parallel
processing

Shared-memory: read
and write from same

memory

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

Cores: parallel
processing

Shared-memory: read
and write from same

memory

• Work:
• Total number of operations

• Depth/Span:
• Longest chain of sequential

dependencies in algorithm

Shared-memory work-depth model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

Massively Parallel Computation (MPC) Model

• M machines
• Synchronous rounds

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

Massively Parallel Computation (MPC) Model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

Massively Parallel Computation (MPC) Model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

𝑆 𝑆 𝑆

• M machines
• Synchronous rounds

• S space per machine

Massively Parallel Computation (MPC) Model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

𝑆 𝑆 𝑆

• S space per machine

Massively Parallel Computation (MPC) Model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

𝑆 𝑆 𝑆

• S space per machine

Massively Parallel Computation (MPC) Model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

𝑆 𝑆 𝑆

• S space per machine
Total Space: 𝑴 ⋅ 𝑺

Massively Parallel Computation (MPC) Model

CPSC 768

What Resources to Use to Process Graph

• Multiple cores and processors
• Communication network over machines

• M machines
• Synchronous rounds

𝑆 𝑆 𝑆

• S space per machine
Total Space: 𝑴 ⋅ 𝑺

Massively Parallel Computation (MPC) Model

Complexity measures:
• Total Space
• Space Per Machine
• Rounds of

communication

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Batch-dynamic model

𝐺$

Old Graph

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Batch-dynamic model

𝐺$

Batch of UpdatesOld Graph

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Batch-dynamic model

𝐺$ 𝐺$%&

Batch of UpdatesOld Graph New Graph

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

𝑐

𝑏

𝑎

𝑏

𝑒

𝑓

𝑏

𝑑

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

Input Stream

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

𝑐

𝑏

𝑎

𝑏

𝑒

𝑓

𝑏

𝑑

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

Input Stream

Small Memory

CPSC 768

𝑎

𝑏

𝑒

𝑓

𝑏

𝑑

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

Small Memory

CPSC 768

𝑒

𝑓

𝑏

𝑑

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓 Small Memory

CPSC 768

𝑏

𝑑

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓 Small Memory

CPSC 768

𝑑

𝑐

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓 Small Memory

CPSC 768

ℎ

𝑓

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

CPSC 768

𝑔

𝑓

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

CPSC 768

ℎ

𝑒

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

CPSC 768

𝑒

𝑏

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

CPSC 768

ℎ

𝑔

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

CPSC 768

𝑔

𝑑

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

CPSC 768

How Updates are Given

• In batches of multiple updates
• As a stream of updates

Streaming Model

𝐺 𝑎

Input Graph

𝑏

𝑐
𝑑𝑔

ℎ 𝑓
𝑒

Input Stream

𝑒

𝑓
ℎ

Small Memory

Complexity measures:
• Memory size
• Number of passes

CPSC 768

Adversarial Models

• Adaptive/oblivious
• Privacy violating

CPSC 768

Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs

(sometimes internal random bits)

CPSC 768

Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs

(sometimes internal random bits)

🤣

🙂

😳😊

😃😀

Graph 𝐺 Trusted Curator
Researchers,
Government,
Businesses,

and
Malicious

Adversaries

Users

Answers

Queries

Differential Privacy: Central Model (DP)

CPSC 768

Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs

(sometimes internal random bits)

Differential Privacy

An algorithm 𝒜 is 𝜺-differentially private if for all pairs of neighbors 𝐺
and 𝐺′ and all sets of possible outputs 𝑆:

Pr 𝒜 𝐺 ∈ 𝑆 ≤ 𝑒' ⋅ Pr 𝒜 𝐺(∈ 𝑆 .

Neighboring inputs differ in some information we’d like to hide

Differential Privacy: Central Model (DP)

CPSC 768

Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs

(sometimes internal random bits)

Neighboring Inputs

Edge-neighboring graphs: differ in one edge

🤣

🙂

😳
😊

😃😀

🤣

🙂

😳
😊

😃😀

CPSC 768

Adversarial Models

• Adaptive/oblivious
• Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs

(sometimes internal random bits)

Local Randomizer

An 𝜺-local randomizer ℛ is an 𝜀-differentially private algorithm that takes as input an
adjacency list 𝒂 and public information.

ℛ
𝒂 = (B, C, E)B C

A

E
Public Information

Differential Privacy: Local Model (LDP)

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Distributed + Differential Privacy = Local Model

Dynamic + Differential Privacy = Continual Release

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Distributed + Differential Privacy = Local Model

Dynamic + Differential Privacy = Continual Release

Incremental/Fully Dynamic + Streaming

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Distributed + Differential Privacy = Local Model

Dynamic + Differential Privacy = Continual Release

Incremental/Fully Dynamic + Streaming

And many more…

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Distributed + Differential Privacy = Local Model

Dynamic + Differential Privacy = Continual Release

Incremental/Fully Dynamic + Streaming

And many more…

Each model is great for a
different real-world system!

But there are many!

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Distributed + Differential Privacy = Local Model

Dynamic + Differential Privacy = Continual Release

Incremental/Fully Dynamic + Streaming

What problems can we study where solutions can be
implemented in many models without many changes?

Each model is great for a
different real-world system!

But there are many!

