CPSC 768:
Scalable and Private Graph Algorithms

Lecture 1: Intro

Quanquan C. Liu
gquangquan.liu@yale.edu

“Practical” Algorithms

CPSC 768

“Practical” Algorithms

Engineering

CPSC 768

“Practical” Algorithms

Engineering

CPSC 768

“Practical” Algorithms

Engineering

CPSC 768

“Practical” Algorithms

Engineering

CPSC 768

“Practical” Algorithms

M Provably efficient algorithms

g Models that consider modern challenges and
computing environments

@ Conl Data structures with best theoretical guarantees
oal:

Implementable in practice

CPSC 768

Key Modern Challenge: Massive Datasets

MASSIVE graph data sets

ClueWeb Go gle

~ 27 billion comments ~ 10 billion edges ~ 6 trillion edges

Web Data Commons X
Hyperlink Graph

~ 128 billion hyperlinks ~ 2 billion follows ~ 300 million neurons

CPSC 768

Main Takeaway of the Class

* This class is focused on research

« Use the techniques you learn outside of this class
 Start conducting research in these topics and more
* Exposure to practice problems and open problems

« Complete a final project

CPSC 768

Logistics

« Course website: https://quanguancliu.com/cpsc/68
» Everything important!
« Syllabus
« Recommended topics
 Class schedule
 Links to a bunch of papers
 Class notes (posted as a batch for the week on Sunday)

* Open problem session scheduling + survey:
https://forms.gle/CsKnH5DvUuVUSXKXQA

CPSC 768

https://quanquancliu.com/cpsc768
https://forms.gle/CsKnH5DvuVu5XKXQA

Format and Workload

* Two class presentations on subjects of their choice related to
the topics of the course. 50% of grade.

* Finalize dates and topics for presentations before April 1:
due Feb. 5.

* Finalize dates and topics for presentations on and after April
1: due Feb. 26.

* One final project (individual or with partner). 50% of grade.

CPSC 768

Format and Workload

* One final project (individual or with partner). 50% of grade.
* Project proposal (1 page): due Feb. 26.
* Progress report (2-3 pages): due March 27.
* In-class presentation: last two weeks of class.
 Final report (at least 8 pages, less than 20): April 24

CPSC 768

Final Project Details (in the context of
SODA/SOSA/ALENEX)

* Reading project (e.g. SOSA paper):
* Read 2-3 papers on the same project and survey on key ideas
« Service to the community for hard to read papers!

CPSC 768

Final Project Details (in the context of
SODA/SOSA/ALENEX)

* Reading project (e.g. SOSA paper):
* Read 2-3 papers on the same project and survey on key ideas
« Service to the community for hard to read papers!
* Theory project (e.g. SODA paper):
« Make an improvement over previous result
* Solve an open problem

CPSC 768

Final Project Details (in the context of
SODA/SOSA/ALENEX)

* Reading project (e.g. SOSA paper):
* Read 2-3 papers on the same project and survey on key ideas
« Service to the community for hard to read papers!
* Theory project (e.g. SODA paper):
« Make an improvement over previous result
* Solve an open problem
* Implementation project (e.g. ALENEX paper):
* Algorithm engineering implementation of an algorithm
* Give a more implementable solution with same or better theory
guarantees

* More details given in the syllabus

CPSC 768

A Brief Overview of Some Models

Covered in This Class
-

CPSC 768

A Key Focus on Graphs

Static or Dynamic

CPSC 768

A Brief Overview of Models We'll Cover

How to represent graph:
* On one machine
e Distributed across many
machines

CPSC 768

A Brief Overview of Models We'll Cover

How to represent graph:

What resources to process:

* On one machine
e Distributed across many
machines

Multiple cores
Communication network
over machines

CPSC 768

A Brief Overview of Models We'll Cover

How to represent graph:

What resources to process:

* On one machine
e Distributed across many
machines

Multiple cores
Communication network
over machines

How updates are given:

* |n batches of multiple

updates
* As astream of updates

CPSC 768

A Brief Overview of Models We'll Cover

How to represent graph: What resources to process:
* On one machine Multiple cores
e Distributed across many e Communication network
machines over machines
How updates are given: Adversarial models:
* |n batches of multiple * Adaptive/oblivious
updates * Privacy violating
* As astream of updates * Central/Local

CPSC 768

How to Represent the Graph

* On one machine
» Distributed across many machines

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines

Cores: parallel
processing

Shared-memory: read
and write from same
memory

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines

Shared-memory work-depth model

Cores: parallel
processing

* Work:
 Total number of operations

e Depth/Span:

* Longest chain of sequential
dependencies in algorithm

Shared-memory: read
and write from same
memory

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines
* Synchronous rounds

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines
* Synchronous rounds

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines
* Synchronous rounds

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines * Sspace per machine
* Synchronous rounds

S S S

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines * Sspace per machine
* Synchronous rounds

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines * Sspace per machine
* Synchronous rounds

CPSC 768

What Resources to Use to Process Graph

* Multiple cores and processors
« Communication network over machines
Massively Parallel Computation (MPC) Model

* M machines * Sspace per machine
* Synchronous rounds Total Space: M - §

CPSC 768

What Resources to Use to Process Graph

Complexity measures:
* Total Space

* Multiple cores and processors

« Communication network over machines : SRIZ?J(rz\ed:i; Machine
Massively Parallel Computation (MPC) Model ST e
* M machines * Sspace per machine

e Synchronous rounds Total Space: M - §

CPSC 768

How Updates are Given

* In batches of multiple updates
» As a stream of updates

Batch-dynamic model

Old Graph

CPSC 768

How Updates are Given

* In batches of multiple updates
» As a stream of updates

Batch-dynamic model

&-¢
0570
O

O.__
O——0
o—0O

Old Graph Batch of Updates

CPSC 768

How Updates are Given

* In batches of multiple updates
» As a stream of updates

Batch-dynamic model

&-¢
0570
O

O=-=
O—O: .
O——0
O—0O
Old Graph Batch of Updates

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

Input Graph

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

NREeRRENN

Input Stream

Input Graph

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

SITTITLEL

Input Stream

Input Graph
Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

SLLITLTE

Input Stream

Input Graph
Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

ST

Input Stream

Input Graph
Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

SLITITLT

Input Stream

Input Graph
Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

SHITIE

Input Stream

Input Graph
Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

SILTLT

Input Stream

Input Graph (h)
(H) Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

S

Input Stream

Input Graph (h)
(H) Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model
i i
(& ®

Input Stream
(&)
Input Graph 'QD
(D

Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

9y

(&
Input Graph 'QD
(D

Input Stream

Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

Y

(&
Input Graph 'QD
(D

Input Stream

Small Memory

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

Input Stream

(&
Input Graph 'QD
(D

CPSC 768

How Updates are Given

* [n batches of multiple updates
* As a stream of updates

Streaming Model

Complexity measures:
 Memory size
 Number of passes

Input Stream

Small Memory

(&
Input Graph 'QD
(D

CPSC 768 ‘ »7 = oo

Adversarial Models

« Adaptive/oblivious
* Privacy violating

CPSC 768

Adversarial Models

« Adaptive/oblivious
* Privacy violating

Oblivious: no knowledge on algorithm outputs
Adaptive: can see previous algorithm outputs
(sometimes internal random bits)

CPSC 768

Adversarial Models

Adanptive/oblivi Oblivious: no knowledge on algorithm outputs
aptive/oblivious Adaptive: can see previous algorithm outputs

* Privacy violating (sometimes internal random bits)

Differential Privacy: Central Model (DP)

Graph G Trusted Curator Users
/ Researchers, \

=7 = = Queries Government,
Businesses,
%) @1

\—9 Answe rs Malicious
_ Adversaries /

CPSC 768

Adversarial Models

Adanptive/oblivi Oblivious: no knowledge on algorithm outputs
aptive/oblivious Adaptive: can see previous algorithm outputs

* Privacy violating (sometimes internal random bits)

Differential Privacy: Central Model (DP)

Differential Privacy

An algorithm A is e-differentially private if for all pairs of neighbors G
and G’ and all sets of possible outputs S:
Pr|A(G) € S] < e? - Pr[A(G') € S].

Neighboring inputs differ in some information we’d like to hide
‘ ' CPSC 768 , B

Adversarial Models

Adanptive/oblivi Oblivious: no knowledge on algorithm outputs
aptive/oblivious Adaptive: can see previous algorithm outputs

* Privacy violating (sometimes internal random bits)

Neighboring Inputs

Edge-neighboring graphs: differ in one edge

CPSC 768

Adversarial Models

Adanptive/oblivi Oblivious: no knowledge on algorithm outputs
aptive/oblivious Adaptive: can see previous algorithm outputs

* Privacy violating (sometimes internal random bits)

Differential Privacy: Local Model (LDP)

Local Randomizer

An £-local randomizer R is an e-differentially private algorithm that takes as input an
adjacency list a and public information.

g © a=(8,C,E) >
A)

Public Information>
(B

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

CPSC 768

Combinations of Models

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

And many more...

CPSC 768

7 2
Each model is great for a

COmb|nat|OnS Of MOdels different real-world system!

But there are many!

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

And many more...

CPSC 768

7 2
Each model is great for a

COmb|nat|OnS Of MOdels different real-world system!

But there are many!

Batch-Dynamic + {Shared-memory work-depth, MPC}

Dynamic + Differential Privacy = Continual Release

Distributed + Differential Privacy = Local Model

Incremental/Fully Dynamic + Streaming

/ AN
What problems can we study where solutions can be

implemented in many models without many changes?

CPSC 768

